NNTDM 12 (2006), 2, 13-20

AN EXTREMAL PROBLEM RELATED TO THE FIBONACCI SEQUENCE

K. T. Atanassov
Centre for Biomedical Engineering, Bulgarian Academy of Sciences, Sofia-1113, Bulgaria
e-mail: krat@argo.bas.bg
R. D. Knott
92 Pennine Road, Horwich, Bolton, BL6 7HW, United Kingdom
e-mail: enquiry@ronknott.com

R. L. Ollerton

University of Western Sydney, Penrith Campus DC1797, Australia r.ollerton@uws.edu.au

A. G. Shannon

Warrane College, The University of New South Wales, 1465 \&
KvB Institute of Technology, North Sydney, NSW, 2060, Australia
e-mail: tony@warrane.unsw.edu.au

Abstract

This paper continues our study of Fibonacci inequalities [1]. For the set $\quad A_{n}=\left\{F_{n-1}, 4 F_{n-2}, \ldots,(n-2)^{2} F_{2}\right\}$ with $k^{\text {th }}$ element given by $a_{k}=k^{2} F_{n-k}$, it is proved that the unique maximal element is given by $a^{*}=a_{4}=16 F_{n-4}, n \geq 9$.

1. INTRODUCTION

Here we shall discuss an extremal problem related to Fibonacci numbers, defined in terms of $\left\{F_{m}\right\}_{n=1}^{\infty}$ such that

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n}, F_{1}=1, F_{2}=1 \tag{1.1}
\end{equation*}
$$

for each natural number n. For notational convenience and extensions we can allow unrestricted values of n [5].

The purpose of this note it to establish the maximal element of the following set. Let the natural number $n \geq 9$ be given. We construct the set

$$
\begin{equation*}
A_{n}=\left\{F_{n-1}, 4 F_{n-2}, \ldots,(n-2)^{2} F_{2}\right\} \tag{1.2}
\end{equation*}
$$

Then the $k^{\text {th }}$ member of the set is

$$
\begin{equation*}
a_{k}=k^{2} F_{n-k}, \tag{1.3}
\end{equation*}
$$

where $1 \leq k \leq n-2$.

2. EXAMPLES

For example,

$$
\begin{equation*}
A_{9}=\{1 \times 21,4 \times 13,9 \times 8,16 \times 5,25 \times 3,36 \times 2,49 \times 1\}, \tag{2.1}
\end{equation*}
$$

and the maximal member of the set is

$$
a_{4}=80 ;
$$

similarly,

$$
\begin{equation*}
A_{10}=\{1 \times 34,4 \times 21,9 \times 13,16 \times 8,25 \times 5,36 \times 3,49 \times 2,64 \times 1\} \tag{2.2}
\end{equation*}
$$

and the maximal element of the set is

$$
a_{4}=128 ;
$$

and

$$
\begin{equation*}
A_{11}=\{1 \times 55,4 \times 34,9 \times 21,16 \times 13,25 \times 8,36 \times 5,49 \times 3,64 \times 2,81 \times 1\}, \tag{2.3}
\end{equation*}
$$

with maximal element

$$
a_{4}=208 .
$$

From these examples we see that the order of the elements of the set is

$$
\begin{equation*}
F_{n-1}<4 F_{n-2}<9 F_{n-3}<16 F_{n-4}>25 F_{n-5}>\ldots>(n-1)^{2} F_{2} . \tag{2.4}
\end{equation*}
$$

We now prove the result that the maximal element a^{*} of A_{n} satisfies

$$
\begin{equation*}
a^{*}=a_{4}=16 F_{n-4}, n \geq 9 . \tag{2.5}
\end{equation*}
$$

3. MAXIMAL ELEMENT

Now let us assume the existence of a natural number q for which

$$
\begin{aligned}
& a_{q}<a_{q-1}, \\
& a_{q}<a_{q+1} .
\end{aligned}
$$

Hence,

$$
\begin{align*}
& q^{2} F_{n-q}<(q-1)^{2} F_{n-q+1}, \\
& q^{2} F_{n-q}<(q+1)^{2} F_{n-q-1} . \tag{3.1}
\end{align*}
$$

Both inequalities are strong because from the obvious inequality

$$
\begin{equation*}
2 F_{k}>F_{k+1}, \tag{3.2}
\end{equation*}
$$

it follows for the second inequality of (3.1) that

$$
2 q^{2} F_{n-q}<2(q+1)^{2} F_{n-q-1}<(q+1)^{2} F_{n-q}
$$

that is,

$$
2 q^{2}<(q+1)^{2},
$$

which is valid only for $q=1,2,3$, and hence only for these values of q is it possible for (3.1) to be valid. But for $q=1$, (3.1) has the form

$$
\begin{aligned}
& F_{n-1}<0, \\
& F_{n-1}<4 F_{n-2},
\end{aligned}
$$

which is impossible. For $q=2$, (3.1) has the form

$$
\begin{aligned}
& 4 F_{n-2}<F_{n-1}, \\
& 4 F_{n-2}<9 F_{n-3},
\end{aligned}
$$

which is also impossible. For $q=3$, (3.1) has the form

$$
\begin{aligned}
& 9 F_{n-3}<4 F_{n-2}, \\
& 9 F_{n-3}<16 F_{n-4},
\end{aligned}
$$

which again is impossible. Therefore, no natural number satisfies (3.1). Hence the set A_{n} has exactly one maximal element.

Let the natural number q satisfy

$$
\begin{aligned}
& a_{q}>a_{q-1}, \\
& a_{q}>a_{q+1} ;
\end{aligned}
$$

that is,

$$
\begin{align*}
& q^{2} F_{n-q}>(q-1)^{2} F_{n-q+1}, \tag{3.3}\\
& q^{2} F_{n-q}>(q+1)^{2} F_{n-q-1} .
\end{align*}
$$

For every natural number k, it follows from (3.2) and the second inequality of (3.3) that

$$
2 q^{2} F_{n-q-1}>q^{2} F_{n-q}>(q+1)^{2} F_{n-q-1} ;
$$

that is,

$$
q^{2}-2 q-1>0,
$$

which is valid for $q>1+\sqrt{5}$; that is, $q \geq 4$.
On the other hand, if

$$
2 F_{k+1}>3 F_{k}
$$

for every natural number k, then from the first inequality of (3.3) it follows that

$$
2 q^{2} F_{n-q+1} 3 q^{2} F_{n-q}>3(q-1)^{2} F_{n-q+1} ;
$$

that is,

$$
2 q^{2}>3(q-1)^{2},
$$

and

$$
q^{2}-6 q+2<0,
$$

which is valid for $q<3+\sqrt{6}$; that is, $q \leq 5$. Therefore, the only possible solutions are $q=4$ and $q=5$.

Finally, for $n \geq 9$ we obtain sequentially:

$$
\begin{aligned}
16 F_{n-4}-25 F_{n-5} & =-9 F_{n-5}+16 F_{n-6} \\
& =7 F_{n-6}-9 F_{n-7} \\
& =-2 F_{n-7}+7 F_{n-8} \\
& =5 F_{n-8}-2 F_{n-9} \\
& \geq 3 F_{n-9} \\
& \geq 3 \\
& >0,
\end{aligned}
$$

that is, the validity of the order of the elements of A_{n} has been established and the maximal element of the set is $a^{*}=a_{4}=16 F_{n-4}, n \geq 9$. For $n<9$, the left hand side is negative as can be verified by substitution.

To illustrate that $a_{4}=\max A_{n}, n \geq 9$, is the unique maximal element, suppose $a_{q}>\left\{a_{q-1}, a_{q+1}\right\}$, i.e.,

$$
q^{2} F_{n-q}>(q+1)^{2} F_{n-q-1}
$$

and

$$
q^{2} F_{n-q}>(q-1)^{2} F_{n-q+1} .
$$

then

$$
\begin{equation*}
\frac{F_{n-q}}{F_{n-q-1}}>\left(\frac{q+1}{q}\right)^{2} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{F_{n-q+1}}{F_{n-q}}<\left(\frac{q}{q-1}\right)^{2} \tag{3.5}
\end{equation*}
$$

must hold simultaneously. Since $\frac{F_{m}}{F_{m-1}} \rightarrow \phi \approx 1.618$ as $m \rightarrow \infty$, for n sufficiently large these are both achievable only if

$$
\left(\frac{q+1}{q}\right)^{2}<\phi<\left(\frac{q}{q-1}\right)^{2} .
$$

Plotting these gives:

from which, noting the monotonicity of the functions, it can be seen that the only integer solution is $q=4$.

Further, since $\left|\frac{F_{m}}{F_{m-1}}-\phi\right| \rightarrow 0$ monotonically and $\frac{25}{16}<\frac{F_{5}}{F_{4}}<\frac{16}{9}$, both (3.4) and (3.5) are then satisfied for all $n-4 \geq 5$, i.e. $n \geq 9$. (That $n=9$ is "sufficiently large" can be seen by also plotting the worst case relevant approximations to ϕ used in (3.4) and (3.5), i.e.
$\frac{F_{5}}{F_{4}}=1 . \dot{6}$ and $\frac{F_{6}}{F_{5}}=1.6$.)

4. CONCLUDING COMMENTS

There are numerous results in the literature which consider aspects of Fibonacci inequalities more generally. A sample of such types is listed in [1]. Other relevant references may be found in $[2,3,4,7]$. We conclude with an approximate approach to achieve the main result in another way:

For $g_{k}>0$ and $n>k>0$, let

$$
a_{k}=g_{k} F_{n-k} .
$$

Then

$$
a_{k}^{\prime}=g_{k} F_{n-k}^{\prime}+g_{k}^{\prime} F_{n-k}=0
$$

when

$$
\frac{g_{k}^{\prime}}{g_{k}}=-\frac{F_{n-k}^{\prime}}{F_{n-k}} \approx \ln \phi,
$$

since, for n sufficiently large,

$$
F_{n} \approx \frac{\phi^{n}}{\sqrt{5}} .
$$

in which ϕ is the golden ratio. Thus the extremal position for $g_{k}=k^{2}$ is approximated by

$$
k=\frac{2}{\ln \phi} \approx 4.16 .
$$

For the interested reader to extend the results further consider Table 1. For

$$
g_{k}=(k+d)^{m} F_{n-k},
$$

the analogous analysis yields

$$
k=\frac{m}{\ln \phi}-d .
$$

The seemingly anomalous 1 s which appear for $d=-3,-4,-5$ appear for any even power and arise for $k+d \leq 1$ because g_{k} is not strictly increasing. These anomalies would be removed if A_{n} was restricted to $k+d>1$; see the Mathematica [6] output below up to $k=n$ 1.

d	$(k+d) F_{n-k}$	$n>$	$(k+d)^{2} F_{n-k}$	$n>$	$(k+d)^{3} F_{n-k}$	$n>$
-5	7	11	1	13	11	15
-4	6	10	1	12	10	14
-3	5	9	1	11	9	13
-2	4	8	6	10	8	12
-1	3	7	5	9	7	11
0	2	6	4	8	6	10
1	1	5	3	7	5	9
2	1	4	2	6	4	8
3	1	3	1	5	3	7
4	1	2	1	4	2	6

Table 1: Maximum element position

REFERENCES

1. K.T. Atanassov, Ron Knott, Kiyota Ozeki, A.G. Shannon, László Szalay. "Inequalities Among Related Pairs of Fibonacci Numbers." The Fibonacci Quarterly. 41 (2003):20-22.
2. S. Vajda, Fibonacci and Lucas Numbers and the Golden Sectio: Theory and Applications. Chichester: Ellis Horwood, 1989.
3. N. Gauthier, "Two Fibonacci Sums - a Variation." Mathematical Gazette. 81 (1997): 85-88.
4. P. Glaister. "Fibonacci Sums of the Type $\sum r^{m} F_{m}$." Mathematical Gazette. 79 (1995): 364-367.
5. A.F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly. 3 (1965): 161-176.
6. Wolfram Research Inc mathworld.wolfram.com/FibonacciNumber.html.
7. Kiyota Ozeki, "On Weighted Fibonacci and Lucas Sums." The Fibonacci Quarterly, 43 (2005): 104-107.
AMS Classification Numbers: 11B39

APPENDIX

The tables below show A_{n}, maximum value and \{position of maximum value\} for $g_{k}=(k+d)^{2}$

$$
d=0
$$

$\left(\begin{array}{ccc}\{1\} & 1 & \{1\} \\ \{1,4\} \\ \{2,4,9\} & 4 & \{2\} \\ \{3,8,9,16\} & 9 & \{3\} \\ \{5,12,18,16,25\} & 16 & \{4\} \\ \{8,20,27,32,25,36\} & 25 & \{5\} \\ \{13,32,45,48,50,36,49\} & 36 & \{6\} \\ \{21,52,72,80,75,72,49,64\} & 50 & \{5\} \\ \{34,84,117,128,125,108,98,64,81\} & 80 & \{4\} \\ \{55,136,189,208,200,180,147,128,81,100\} & 128 & \{4\} \\ \{89,220,306,336,325,288,245,192,162,100,121\} & 208 & \{4\} \\ \{144,356,495,544,525,468,392,320,243,200,121,144\} & 336 & \{4\} \\ \{233,576,801,880,850,756,637,512,405,300,242,144,169\} & 544 & \{4\} \\ \{377,932,1296,1424,1375,1224,1029,832,648,500,363,288,169,196\} & 1424 & \{4\} \\ \end{array}\right.$

Note that in the following tables, extremal values occur four places to the right of the 0 for n sufficiently large.

$$
d=-1
$$

$\left(\begin{array}{ccc}\{0\} & 0 & \{1\} \\ \{0,1\} & 1 & \{2\} \\ \{0,1,4\} & 4 & \{3\} \\ \{0,2,4,9\} & 9 & \{4\} \\ \{0,3,8,9,16\} & 16 & \{5\} \\ \{0,5,12,18,16,25\} & 25 & \{6\} \\ \{0,8,20,27,32,25,36\} & 36 & \{7\} \\ \{0,13,32,45,48,50,36,49\} & 50 & \{6\} \\ \{0,21,52,72,80,75,72,49,64\} & 80 & \{5\} \\ \{0,34,84,117,128,125,108,98,64,81\} & 128 & \{5\} \\ \{0,55,136,189,208,200,180,147,128,81,100\} & 208 & \{5\} \\ \{0,89,220,306,336,325,288,245,192,162,100,121\} & 336 & \{5\} \\ \{0,144,356,495,544,525,468,392,320,243,200,121,144\} & 544 & \{5\} \\ \{0,233,576,801,880,850,756,637,512,405,300,242,144,169\} & 880 & \{5\}\end{array}\right)$

$$
d=-2
$$

$\{1\}$	1	$\{1\}$
$\{1,0\}$	1	$\{1\}$
$\{2,0,1\}$	2	$\{1\}$
$\{3,0,1,4\}$	4	$\{4\}$
$\{5,0,2,4,9\}$	9	$\{5\}$
$\{8,0,3,8,9,16\}$	16	$\{6\}$
$\{13,0,5,12,18,16,25\}$	25	$\{7\}$
$\{21,0,8,20,27,32,25,36\}$	36	$\{8\}$
$\{34,0,13,32,45,48,50,36,49\}$	50	$\{7\}$
$\{55,0,21,52,72,80,75,72,49,64\}$	80	$\{6\}$
$\{89,0,34,84,117,128,125,108,98,64,81\}$	128	$\{6\}$
$4,0,55,136,189,208,200,180,147,128,81,100\}$	208	$\{6\}$
$, 89,220,306,336,325,288,245,192,162,100,121\}$	336	$\{6\}$
$44,356,495,544,525,468,392,320,243,200,121,144\}$	544	$\{6\}$

$$
d=-3
$$

$\left(\begin{array}{ccc}\{4\} & 4 & \{1\} \\ \{4,1\} & 4 & \{1\} \\ \{8,1,0\} & 8 & \{1\} \\ \{12,2,0,1\} & 12 & \{1\} \\ \{20,3,0,1,4\} & 20 & \{1\} \\ \{32,5,0,2,4,9\} & 32 & \{1\} \\ \{52,8,0,3,8,9,16\} & 52 & \{1\} \\ \{84,13,0,5,12,18,16,25\} & 84 & \{1\} \\ \{136,21,0,8,20,27,32,25,36\} & 136 & \{1\} \\ \{220,34,0,13,32,45,48,50,36,49\} & 220 & \{1\} \\ \{356,55,0,21,52,72,80,75,72,49,64\} & 356 & \{1\} \\ \{576,89,0,34,84,117,128,125,108,98,64,81\} & 576 & \{1\} \\ \{932,144,0,55,136,189,208,200,180,147,128,81,100\} & 932 & \{1\} \\ \{1508,233,0,89,220,306,336,325,288,245,192,162,100,121\} & 1508 & \{1\}\end{array}\right)$

