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ABSTRACT 
This paper looks at some basic number theoretic properties of Fermatian 
numbers.  We define the n-th reduced Fermatian number in terms of 
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Some congruence properties and relationships with Bernoulli and Fibonacci 
numbers are explored.  Some aspects of the notation and meaning of the 
Fermatian numbers are also outlined. 

 
 

1. INTRODUCTION 
One of the first variations of the q-binomial coefficients studied by Gauss and Cayley 
(Macmahon [21]) and Cauchy [10] were suggested by Fontené [15] who used an arbitrary 
sequence { }nA  of real or complex numbers instead of the natural numbers.  The ordinary 
binomial coefficients were the special case nAn =  and the q-binomial coefficients 
for 1−= n

n qA , the n-th Fermatian function of q. 
 
Morgan Ward [26] independently rediscovered Fontené’s generalized coefficients.  Later 
Gould [16] developed some striking theorems for what he called the Fontené-Ward 
generalized binomial coefficients.  He used 
 

,...1 12 −++++= n
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although we shall designate this by 

n
q  for subsequent notational convenience.  More 

formally, we define the n-th reduced Fermatian number in terms of 
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so that 
,1 nn =  

and 
,!!1 nn =  
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It is the purpose of this paper to examine some of the properties of these Fermatian 
numbers, which have been considered elsewhere by the present writer in another context 
[24]. 
 
Some examples of Fermatian numbers with various indices are displayed in Table 1. 
 
q↓ n→ 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 1 3 7 15 31 63 127 255 511
3 1 4 13 40 121 364 1093 3280 9841
4 1 5 21 85 341 1365 5461 21845 87381
5 1 6 31 156 781 3906 19531 97656 488281
6 1 7 43 259 1555 9331 55987 335923 2015539
7 1 8 57 400 2801 19608 137257 960800 6725601
8 1 9 73 585 4681 37449 299593 2396745 19173961
9 1 10 91 820 7381 66430 597871 5380840 48427561

Table1: First Nine Fermatians of the First Nine Indices 
 
 

2. CONGRUENCE PROPERTIES 
We begin with some congruence properties (modulo 

n
q ). 
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A corollary of this is that 
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is an analog of the ordinary binomial coefficient. 
 
Proof: 
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3. CONNECTIONS WITH BERNOULLI AND FIBONACCI NUMBERS 
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in which the rB  are ordinary Bernoulli numbers defined by the recurrence relation 
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with initial conditions 2
1

10 ,1 −== BB . 
 
Proof of (3.1): 
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by the Euler-Maclaurin sum formula [17]. ■ 
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in which nn LF ,  are the Fibonacci and Lucas numbers respectively which can be 
expressed in their Bernoulli-Binet form [25] by 
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where α,β are the roots of the characteristic equation of the corresponding second-order 
linear homogenous recurrence relation  
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More generally, for Horadam’s generalized sequence of numbers{ }nw [19] 
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Where α,β are the roots of .02 =+− qpxx  
 
Proof of (3.3):  
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4. COMBINATORIAL ASPECTS 

The writer feels that 
n

q  has some notational advantages.  If  
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then nT  is the sum of the rising diagonals of the multinomial triangle generated by n

r
q  

[11,13,14].  The notational advantages of  
n

q  can be further illustrated by reference to 
Hoggatt and Bicknell [18].  They prove that, for the general r-nomial triangle induced by 
the expansion of ,n

r
q (n=0,1,2,3,…), by letting the r-nomial triangle be left-justified and 

by taking sums from the left edge and jumping up p and over 1 entry until out of the 
triangle that 
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and the r-nomial coefficient 
rj

n

⎭
⎬
⎫

⎩
⎨
⎧ is the entry in the n-th row and the j-the column of the 

generalized Pascal triangle.  Thus 
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which, when p=1, is a generating function for { }nT  with suitable initial values.  In this 
formula 

( ) ,...1 )1(2 −++++= rppp
r

p xxxx  (4.4)

so that the notation is quite versatile. 
 
Carlitz [6] has developed a generalization of Wilson’s Theorem, but efforts to find such a 
generalization in terms of !

1−p
q  were unsuccessful.  Its development would enable the 

construction of a Fermatian Staudt-Clausen Theorem [20]. 
 
Efforts to find physical descriptions of 

n
q  have not yielded much success either. Possible 

approaches include the following.  The enumerator for the number of r-permutations with 
repetition of n different things and no m consecutive things alike is denoted  by 
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where )(

,
m
rna  are the numbers.  This is due to Riordan [22] who has shown that 
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It is interesting to note, that for m=3, it follows from Riordan’s Problem 17(b) that 
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in terms of Fibonacci numbers. Chapter XVI of Dickson [12] is devoted to a description 
of the properties of various interpretations of nq . 
 
Riordan [23] has also shown that  
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where )(qanm  is the enumerator of partitions with m parts, none greater than n, such that 
their Ferrer’s graphs include an initial triangle of sides n and m (the graph of partition 
m,m-1,…,2,1).  
 
Carlitz used )(mpn  and )(rNn  in formulae which can be adjusted to include ix , where 

)(mpn  is the number of partitions of m into parts not exceeding n, and  
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The rising and falling factorials, Fermatians and Bernoulli numbers can all in fact be 
related by Carlitz’ note on a theorem of Glaisher [3,4,5]: for 
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The 

n
q  may also be considered in their role as cyclotomic polynomials, a topic to which 

Carlitz devoted a number of papers. 
 

5. CONCLUDING COMMENTS 
Carlitz and Moser [9] examined some of the Fermatian properties by giving all the 
possible factorizations of nx  into its product of C-polynomials over the field of rational 
numbers, where the C-polynomial of A is defined by 
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{ },,...,, 21 kaaaA =  



32  

an ordered set of non-negative integers.  A particularly interesting result of Carlitz and 
Moser is that if f(n) denotes the number of factorizations, 
 

),()( xBxAxn =  
where A(x),B(x) are C-polynomials, then 
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 Elsewhere [7] Carlitz proved, that, for the quotient 
( )( ) ,

)!(
!1

1−

−
= pn n

npQ  
(5.2)

the highest power of the prime p, that divides nQ  is 0 when 
j

pn = , and is (aj-j) when 

.
j

pan =   Carlitz [2] has also used 
n

q  in the development of q-Bernoulli numbers and 

polynomials.  Carlitz used the notation [x] such that 
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but as [x] is also used for the greatest integer function and Carlitz himself [1] also used 
[k] to mean 

[ ] ,xxk
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it was felt that the notation used in this paper is less confusing and more suggestive. 

 
REFERENCES 

1. L. Carlitz. A Set of Polynomials. Duke Mathematical Journal. 6 (1940): 486-504. 
2. L. Carlitz. q-Bernoulli Numbers and Polynomials. Duke Mathematical Journal. 15 

(1948): 987-1000. 
3. L. Carlitz. A Theorem of Glaisher. Canadian Journal of Mathematics. 5 (1953): 306-

316. 
4. L. Carlitz. Note on a Theorem of Glaisher.  Journal of the London Mathematical 

Society. 28 (1953): 245-246. 
5. L. Carlitz. Extension of a Theorem of Glaisher and Some Related Results. Bulletin of 

the Calcutta Mathematical Society. 46 (1954): 77-80. 
6. L. Carlitz. A Note on the Generalized Wilson’s Theorem. American Mathematical 

Monthly. 71 (1964): 291-293. 
7. L. Carlitz. The Highest Power of a Prime Dividing Certain Quotients. Archiv der 

Mathematik. 18 (1967): 153-159. 
8. L. Carlitz. Some Identities in Combinatorial Analysis. Duke Mathematical Journal 38 

(1971): 51-56. 
9. L. Carlitz & L. Moser. On Some Special Factorizations of ( ) )1/(1 xxn −− . Canadian 

Mathematical Bulletin. 9 (1966): 421-426. 
10. A. L. Cauchy. Memoire sur les functions don’t plusiers valeurs. Comptes rendus de 

l’Académie des Sciences. 17 (1843): 526-534. 
11. N. Cox, J. W. Phillips & V.E. Hoggatt Jr. Some Universal Counterexamples. The 

Fibonacci Quarterly. (1970): 242-248. 



33  

12. L. E. Dickson. History of the Theory of Numbers.Volume 1.  NewYork: Chelsea, 
1952. 

13. M. Feinberg. Fibonacci-tribonacci.The Fibonacci Quarterly. 1(3) (1963): 71-74. 
14. M. Feinberg. New Slants. The Fibonacci Quarterly. 2(1964): 223-227. 
15. G. Fontené. Generalization d’une formule connue. Nouvelles Annales Mathématiques. 

15 (1915): 112.  
16. H. W. Gould. The Bracket Function and Fontené-Ward Generalized Binomial 

Coefficients with Application to Fibonacci Coefficients. The Fibonacci Quarterly. 7 
(1969): 23-40,55. 

17. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. Oxford: The 
Clarendon Press, 1965. 

18. V. E. Hoggatt Jr & M. Bicknell. Diagonal Sums of Generalized Pascal Triangles. The 
Fibonacci Quarterly. 7 (1969): 341-358.  

19. A. F. Horadam. Generating Functions for Powers of a Certain Generalized Sequence 
of Numbers. Duke Mathematical Journal. 32 (1965): 437-446. 

20. A. F. Horadam & A. G. Shannon. Ward’s Staudt-Clausen Problem. Mathemetica 
Scandinavica. 29 (1976): 239-250. 

21. P. A. Macmahon. Combinatory Analysis. Cambridge: Cambridge University Press, 
1916. 

22. J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley, 1958, p.3. 
23. J. Riordan. A Note on a q-extension of Ballot Numbers. Journal of Combinatorial 

Theory. 4 (1968): 191-193. 
24. A. G. Shannon, Some Fermatian Special Functions, Notes on Number Theory & 

Discrete Mathematics, in press. 
25. G. J. Tee. Russian Peasant Multiplication and Egyptian Division in Zeckendorf 

Arithmetic. Australian Mathematical Society Gazette. 30 (2003): 267-276. 
26. M. Ward. A Calculus of Sequences. American Journal of Mathematics. 75 (1936): 

255-266. 
 
 
AMS Classification Numbers: 11B65, 11B39, 05A30 


