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ABSTRACT 
An analysis is made of the class and row structures of Fibonacci numbers 
within the modular ring 4Z .  It is found that the class structure repeats the 
pattern 444444 132110 .  Two thirds of the rows in the ring array are even 
and all are a sum of Fibonacci numbers.  Sums of Fibonacci numbers, 
covering ten, five and three consecutive numbers or number types, had 
factors of 11, 3111× , or 101; (these include specific sets).  The Fibonacci 
number primes all belong to the Class 41  and therefore equal a sum of 
squares.  There is only one unique set of squares with no common factors.  
The factors found for the sums have a link with Fermat and Mersenne 
numbers. 

 
1. INTRODUCTION 

The sequence of Fibonacci numbers,{ }nF , can be defined by the second-order homoge-
neous linear recurrence relation 
 

,0,12 ≥+= ++ nFFF nnn  (1.1)
 
with initial terms .1,0 10 == FF   The Binet form of the general terms is given by 
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where βα ,  are the roots of the associated characteristic equation [1].  We note that  
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the golden ratio.  Both the Fibonacci numbers and the golden ratio have appeared in the 
mathematical and scientific literature for hundreds of years [9].  Here we explore the 
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broader characteristics of the Fibonacci numbers in the context of the modular ring .4Z   
This is one of a number of such rings which permit new insights into old results as in 
[6,7]. 
An integer 4Zn∈ can be specified by ( )iri +4  where i is the class and ir  the row in a tab-

ular array of the class. Obviously, even integers ( )44 2,0∈  and odd integers ( )44 3,1∈  [5,6]. 
There are no powers in 42  and no even powers in 43 . 
 

2. CLASS AND ROW STRUCTURE OF FIBONACCI NUMBERS IN 4z  
Table 1 lists structure for the first 24 Fibonacci numbers.  As can be seen, the class struc-
ture has the row pattern 

444444 132110 .  444444 132110 . … 
which illustrates the dominance of the class .14    
 

n nF  Class Row, nr  
0 0 40  0 
1 1 41  0 
2 1 41  0 
3 2 42  0 
4 3 43  0 
5 5 41  1 
6 8 40  2 
7 13 41  3 
8 21 41  5 
9 34 42  8 

10 55 43  13 
11 89 41  22 
12 144 40  36 
13 233 41  58 
14 377 41  94 
15 610 42  152 
16 987 43  246 
17 1597 41  399 
18 2584 40  646 
19 4181 41  1045 
20 6765 41  1691 
21 10946 42  2736 
22 17711 43  4427 
23 28657 41  7164 



 14

Table 1: Structure for the first 24 Fibonacci numbers 
 
The row pattern in the final column of Table 1 follows from Equation (1.1) and the struc-
ture of the ring; that is, if we define 0=nF  for n < 0, then the row nr  is given by 
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Thus it is only necessary to consider the structure of the first few Fibonacci numbers.  
That is, with  

,4 irF in +=  
Then starting with n=2, we get 
 

=2F  ( ) ( ) .144 410 ++ rr  ( ) 14 10 ++= rr  41∈  (2.2)
=3F  ( ) ( )41

/
1 1414 +++ rr  ( ) 24 1

/
1 ++= rr  42∈  (2.3)

=4F  ( ) ( )42
//

1 2414 +++ rr ( ) 34 2
//

1 ++= rr  43∈  (2.4)

=5F  ( ) ( )423 2434 +++ rr  ( ) 114 23 +++= rr 41∈  (2.5)
=6F  ( ) ( )43

///
1 3414 +++ rr ( )14 3

///
1 ++= rr  40∈  (2.6)

 
and so on. The parity of each row depends on the Class of nF  and the Class of n (Table 

2).  Note that the 41∈nF  that follows 43  always has an odd n. 
 

Class of nF  Parity of row Comments 

40  E always 

41  E 41∈n  
41  E 42∈n  
42  E always 

43  E 40∈n  
41  O 41∈n  
40  E always 

41  O 43∈n  
41  O 40∈n  
42  E always 

43  O 42∈n  
41  E 43∈n  

Table 2: Parities of the rows for the Class of nF  (E: even; O: odd) 
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3. SUMS OF FIBONACCI NUMBERS 
Sets of ten 
One of the factors of the sum of ten consecutive Fibonacci numbers is always 11.  This 
follows from mathematical induction and Equation (8) of Horadam [3]: 
 

,1,11 >+= −++ iFFFFF niniin  (3.1)
so that 
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(3.2)

 
We have recently shown [8] that when n is odd {n>0), 11 is always a factor of ( )110 +n , 
while for an even exponent ( )42∈mm , the quantity ( )110 +m  always has a factor of 101.  
As shown below, sums of three Fibonacci numbers have a factor of 101. These results 
show a link among Mersenne, Fermat and Fibonacci numbers. 
 
Sets of five 
11 is also a factor of the sum of five consecutive odd-subscripted Fibonacci numbers; that 
is, with n odd: 
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This follows from the lacunary recurrence relations in [10]: 
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so that 

.11)32(11 41
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In the modular ring 4Z , a set of five consecutive odd-sub-scripted Fibonacci numbers 
must have one of the following class structures: 
 

I 44444 21121  
II 44444 12112  
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III 44444 11211  
 

This is because both the Classes 43  and 40  always have even n. If we take the Set I 
above, with the rows represented by ir , then  
 

( ) 314 /
2

//
1

/
121 ++++++= rrrrrS  (3.6)

 
so that 43∈S .  This will be the case for both Sets I and II. The prime 4311∈  so that the 
other component must be in 41  since 444 313 →×  whereas 444 133 →× .  Set III will 
have 42∈S  so that the other component will be in 42  since .223 444 →×  
 
As an example, consider the case when n=7 with 47 113∈=F .  The associated sum will 
have the class structure of Set I.  (The interested reader might like to try Class II or Class 
III.) 
 
Using Equations (2.1) and (3.6), we obtain 
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814435512183
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(3.7)

so that 
( ) .8911979314 ×==++∑ ir  (3.8)

 
Of course, sums of five consecutive even-subscripted Fibonacci numbers must also have 
11 as a factor.  This follows from the fact that ten consecutive Fibonacci numbers have 
11 as a factor; as do multiples of ten consecutive numbers in general. 
 
Class specific sets 
Class 42  sum 
When five consecutive 42  Fibonacci numbers are summed the result has a factor of 

3111×  or 341; that is, 

( ) .3111 12

4
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t
tn FF  (3.9)

 
The coefficient 6 occurs because n=3+6q, q=0,1,2,3,…, which yields the n values of 

42∈nF . 
Since each 

,24 2 += ini rF  
then 
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so that the sum must also be in Class 42 .  Since 44 331,311 ∈∈  and 412 2∈+nF , the 

products 444 133 =×  and 444 221 =× .  For example, 
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(3.11)
 
Class 40  sum. 
When five consecutive Class 40 Fibonacci numbers are added, the sum has a factor 
( )3111×   as in Class .24  Here n=6w, w=1,2,3,… . Hence, 
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because 412 0∈+nF  and .0033 4444 →××   For instance, 
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Class 43  sum 
The n values for 43∈nF  are generated by n=4+6v, v=0,1,2,3,… . As for 42  and 40  sums 

of five consecutive Fibonacci numbers in 43  follow the pattern of Equation (3.9), but the 
sum must fall in 43  because 412 3∈+nF  and ( ) .13111 4∈×   For example, 
 

( )
( ) .3111

9873111
31781117711987553

16

4

0
28221610464

F

FFFFFF
t

t

×=
××=

++++=

++++=∑
=

+

 

(3.14)
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Class 41  sum 
The Fibonacci numbers in this Class are of three types with =a+6q, { }5,2,1∈a .  When 
five consecutive 41∈nF  are summed, we get (just as for the other three Classes): 
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because 412 1∈+nF  and ( ) 413111 ∈× .  As an illustration, consider 
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(3.15)
 
The same applies to the other 41  types. From Equation (3.1) we have that the sum, S, is, 
after repeated use of Equation (3.1), given by 
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(3.17)

 
When the sum of fifteen evenly spaced Fibonacci numbers, all in 41 , is taken we find that  
 

( )( ) 4121212 33111
521

∈++×= +++ nnn FFFS  (3.18)

 
where qqnqnqn ,65,62,61 521 +=+=+=  constant for the set.  For example, with 

,17,14,13,2 521 ==== nnnq  we have 
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Sums with a factor 101 
A sum of three Fibonacci numbers yields a factor of 101, but the pattern is more complex 
than previously (Table 4). 
 

Sum Class structure of nF  
19101171311 ×=++ FFF  444 111 ++  

34952101 22
331311 ×××=++ FFF  444 211 ++  

782772101 3
391713 ××=++ FFF  444 211 ++  

661097101393313 ×=++ FFF  444 221 ++  
Table 4: Sums of three Fibonacci numbers 

 
4. FIBONACCI PRIMES 

It is well known that if pF  is a prime then p is prime, but if p is prime, then pF may be 
composite [9] (Table 5). 
 
n nF  Factors Class of (d,e) Rows Class  
   n nF  n nF  1−nF  1+nF

 
5 5 p 41  41  (2,1) 1 1 43  40  
7 13 p 43  41  (3,2) 1 3 40  41  
11 89 p 43  41  (8,5) 2 22 43  40  
13 233 p 41  41  (13,8) 3 58 40  41  
17 1597 p 41  41  (21,34) 4 399 43  40  
19 4181 37,113 43  41  (55,34)

(41,50)
4 1045 40  41  

23 28657 p 43  41  (144),(89) 5 7164 43  40  
29 514229 p 41  41  (610),(377) 7 128557 43  40  
31 1346269 557,2417 43  41  (987,610)

(875,762)
7 336567 40  41  

37 24157817 73,149,2221 41  41  (4181,2584)
(4909,244)

(3859,3044)

9 6039454 40  41  

Table 5: Fibonacci primes and pseudo-primes [9] 
 

An important feature of Table 5 is that all 41∈nF .  Integers in this Class equal a sum of 
squares ( )22 ed + , but primes only have a unique pair of (d,e) with no common factors 
[7]. Composites have the same number of (d,e) pairs as they have factors.  Thus, all Fibo-
nacci numbers with a prime subscript can be sieved out and then checked for (d,e) pairs. 
The d and e for primes are Fibonacci numbers and are simply obtained [7] from 
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)1()1( 2
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Row and Class patterns for nF  and n could also be explored.  In Table 5, the composites 
occur for repeat rows, for example.  It is worth investigating why some sets of five Fibo-
nacci numbers with prime subscripts have a factor of 13 and others do not; for instance,  
 

13| ( )17131175 FFFFF ++++  
and 

13| ( ),231713117 FFFFF ++++  
but 

13┼ ( )2923171311 FFFFF ++++ . 
 
Furthermore, one could look at the patterns of row nesting; that is, the rows of the rows 
of the rows… or Meta-Fibonacci sequences [12]). 
 

5. SUMS OF PRODUCTS OF TWO CONSECUTIVE FIBONACCI NUMBERS 
It is well known that [9] 
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Equation (5.1) can be generalized as follows: 
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with i and j having the same parity.  It then follows from Equation (5.2) that 
 

,22
ijijij FFFF +−=−  (5.3)

 
which is a generalization of the known Identities ( ) ( )2625 , II  of [2], namely, 
 

,22
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pnpnpn FFFF =− −+  
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The question arises whether the difference of squares in Equation (5.2) could equal a 
square or some other power? Some examples of Equations (5.2) and (5.3) are shown in 
Table 6. 
 
i j Sum j-i 2

2
2

2 ++ − ij FF  4++− ijij FF  
0 6 440 6 440121 22 =−  440558 =×  
1 17 17480757 16 17480761-4=17480757 1748075717711987 =×  
2 12 142120 10 1421203377 22 =−  142120258455 =×  
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5 19 119814747 14 1198147471310946 22 =−  119814747317811377 =×  
Table 6: Examples of Equations (5.2) and (5.3) 

  
For an application of the sequence { }1+nn FF  in Equation (5.1) see [1].  Little is recorded 
in the literature about this sequence.  If we let 
 

,1+= nnn FFU  
 
then it can be established that { }nU  satisfies the second-order inhomogeneous recurrence 
relation 
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with initial conditions .2,1 21 == UU  
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from which the result follows from the use of Simson’s identity: 
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6. FINAL COMMENTS 
Row zero in 4Z  has integers with right end digits (REDs) (indicated by an asterisk) of 
0,1,2,3.  This is repeated in the fifth row.  The first row has REDs of 4,5,6,7, as does the 
sixth row.  This regular pattern for the REDs gives rise to periodicity in the REDs of Fib-
onacci numbers.  For example, numbers that fall in Class 41  with ,1* =nF  always fall in a 
row with a RED of 0 or 5.  Some examples of this are set out in Table 7. 
 

nF  Rows REDs 

1F  0 0 

2F  0 0 

8F  5 5 

19F  1045 5 

41F  41395035 5 

59F  239180506510 0 

61F  626182695490 0 

62F  1013184884470 0 

68F  18180865062035 5 
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79F  3618083506169055 5 
Table 7: Right End Digit Patterns 

 
A periodicity of 60 has been noted for 1* =nF ;  when n=2 and 62, for instance [9].  How-
ever, it is more instructive to look at periodicity in terms of the integer structure.  When 

,3,1 4
* ∈= nn FF  the rows 3r  have REDs of 2 or 7.  For example, the REDs of the rows 

for 88822822 ,,, FFFF  are 7,2,7,2, respectively, which shows the interval of 5 as expected.  
Note that the periodicity of 60 corresponds to the same RED for the rows.  In general, 
any Fibonacci number will always have rows such that the intervals for the REDs are 0 or 
5; the Fibonacci numbers must be in the same Class (Table 8). 
 

*
nF  *

1r  *
3r  *

nF  *
0r  *

2r  
1 0,5 2,7 0 0,5 2,7 
3 3,8 0,5 2 3,8 0,5 
5 1,6 3,8 4 1,6 3,8 
7 4,9 1,6 6 4,9 1,6 
9 2,7 4,9 8 2,7 4,9 

Table 8: 3,2,1,0,4 =+= iirF in  
 
The sequences for the last 2 digits (or 3 digits or n digits) may be analysed similarly.  For 
instance, using { },3,1,00,09,08,07,06,05,04,03,02,01* ∈= iri  we can deduce that 41∈nF  

when the last two digits are 01,05,09,13,17,21,25,29,33,37, whereas 43∈nF  if the last 
two digits are 03,07,11,15,19,23,27,31,35 or 39. 
 
Other interesting Fibonacci number results could be analysed with modular rings, such as 
Horadam’s Pythagorean number triples [4]. 
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