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ABSTRACT
An analysis is made of the class and row structures of Fibonacci numbers
within the modular ring Z,. It is found that the class structure repeats the

pattern 0414 142434 1s. Two thirds of the rows in the ring array are even

and all are a sum of Fibonacci numbers. Sums of Fibonacci numbers,
covering ten, five and three consecutive numbers or number types, had
factors of 11, 11x31, or 101; (these include specific sets). The Fibonacci

number primes all belong to the Class 14 and therefore equal a sum of
squares. There is only one unique set of squares with no common factors.
The factors found for the sums have a link with Fermat and Mersenne
numbers.

1. INTRODUCTION
The sequence of Fibonacci numbers, {Fn}, can be defined by the second-order homoge-

neous linear recurrence relation

Foz =Foa + R n20, (1.1)

n+l

with initial terms F, =0, F, =1. The Binet form of the general terms is given by

1 n n
Fn:ﬁ( -5 (1.2)

wherea, # are the roots of the associated characteristic equation [1]. We note that

. F,
lim =a,
nﬁw( Fn—l J

the golden ratio. Both the Fibonacci numbers and the golden ratio have appeared in the
mathematical and scientific literature for hundreds of years [9]. Here we explore the
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broader characteristics of the Fibonacci numbers in the context of the modular ring Z,.
This is one of a number of such rings which permit new insights into old results as in
[6,7].

An integern € Z, can be specified by (4ri +i) where i is the class and r, the row in a tab-
ular array of the class. Obviously, even integers € ((_)4 ,54) and odd integers € (14 ,§4) [5.6].

There are no powers in 24 and no even powers in 3.

2. CLASSAND ROW STRUCTURE OF FIBONACCI NUMBERSIN z,

Table 1 lists structure for the first 24 Fibonacci numbers. As can be seen, the class struc-
ture has the row pattern

041214243414, 041414243414, ...

which illustrates the dominance of the class 1s.

n F, Class Row, r,
0 0 04 0
1 1 1s 0
2 1 Ls 0
3 2 24 0
4 3 3, 0
5 5 Ls 1
6 8 04 2
7 13 Ls 3
8 21 1s 5
9 34 24 8
10 55 34 13
11 89 1s 22
12 144 04 36
13 233 1a 58
14 377 1a 94
15 610 24 152
16 987 3, 246
17 1597 1a 399
18 2584 04 646
19 4181 1 1045
20 6765 1a 1691
21 10946 24 2736
22 17711 3, 4427
23 28657 1 7164
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Table 1: Structure for the first 24 Fibonacci numbers

The row pattern in the final column of Table 1 follows from Equation (1.1) and the struc-
ture of the ring; that is, if we define F, =0 for n <0, then the row r, is given by

r, = FnﬁHj, 2.1
=0
in which
£l 0, n<l,
" |F, n>l.

Thus it is only necessary to consider the structure of the first few Fibonacci numbers.
That is, with

F,=4r +i,
Then starting with n=2, we get
F, = (4r,)+(4r, +1),. =4(r, +1,)+1 els (2.2)
F, = (4 ) 4r, +1), = 4(r1 r ) €2, (2.3)
Fo= (ar) +1)+ (4r,+2), =41 +1,)+3 &3, (2.4)
Fo = (4r, +3)+(4r, +2) =4+, +1)+1 <1, (2.5)
F, = (4r1”/ +1)+ (4r, +3), 4(rl”/ +, +1) €04 (2.6)

and so on. The parity of each row depends on the Class of F, and the Class of n (Table
2). Note that the F, 14 that follows 34 always has an odd n.

Classof F, Parity of row Comments
04 E always
14 E ne 14
i4 E ne 54
24 E always
34 E ne 64
14 O ne i4
04 E always
Ls O ne3,
L4 O neo,
24 E always
54 O ne 54
i4 E ne 54

Table 2: Parities of the rows for the Class of F, (E: even; O: odd)
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3. SUMS OF FIBONACCI NUMBERS
Sets of ten
One of the factors of the sum of ten consecutive Fibonacci numbers is always 11. This
follows from mathematical induction and Equation (8) of Horadam [3]:

F.,=FF_ +F_F. i>l, (3.1

i’ n+l i-1" n»

so that

9 9 8
> Fo :FM(H Fj]+ Fn(1+Zij
i=0 2

= k=1

= 88F, ., +55F,
=11(8F,,, +5F,) -
=11F,,. (3.2)

We have recently shown [8] that when n is odd {n>0), 11 is always a factor of (10” + 1),

while for an even exponent m(m €24 ), the quantity (10m + 1) always has a factor of 101.

As shown below, sums of three Fibonacci numbers have a factor of 101. These results
show a link among Mersenne, Fermat and Fibonacci numbers.

Sets of five
11 is also a factor of the sum of five consecutive odd-subscripted Fibonacci numbers; that
is, with n odd:

I:n+2i = 1 1Fn+4' (33)

4
i=0

This follows from the lacunary recurrence relations in [10]:

4
z I:n+2i = I:n + I:n+2 + I:n+4 + Fn+6 + Fn+8
i=0
=22F, +33F,,, (3.4)
so that
4
S=> F.. =11Q2F, +3F, ) =11F . (3.5)

i=0

In the modular ringZ,, a set of five consecutive odd-sub-scripted Fibonacci numbers
must have one of the following class structures:

I 2,14142414
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I 1,14 241414

This is because both the Classes 34 and 04 always have even n. If we take the Set I
above, with the rows represented by r,, then

S:4(r1 N R A +1)+3 (3.6)

so that Se34. This will be the case for both Sets I and II. The prime 11e 34 so that the
other component must be in 14 since 34 x14s — 34 whereas3s x34 — 14.  Set III will
have Se 24 so that the other component will be in 24 since 34 x 24 — 24.

As an example, consider the case when n=7 withF, =13 € ls. The associated sum will

have the class structure of Set I. (The interested reader might like to try Class II or Class
1L

Using Equations (2.1) and (3.6), we obtain

Sr=F+F+F+F +F +F, +F, +F 3.7
=3+8+21+1+55+3+144+8
=243
so that
431 +1)+3=979 =11x89. (3.8)

Of course, sums of five consecutive even-subscripted Fibonacci numbers must also have
11 as a factor. This follows from the fact that ten consecutive Fibonacci numbers have
11 as a factor; as do multiples of ten consecutive numbers in general.

Class specific sets
Class 2, sum

When five consecutive 2; Fibonacci numbers are summed the result has a factor of
11x31 or 341; that is,

4

z Fret = (1 1x3 1)Fn+12- (3.9

t=0

The coefficient 6 occurs because N=3+6q, g=0,1,2,3,..., which yields the n values of
F, e 2.
Since each
F,=4r, +2,
then
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> Fos = 4(2(& )+ 2j +2, (3.10)

so that the sum must also be in Class 24. Since 11€ 34,3134 and F..., €24, the

products 34 x34 =14 and 14 x 24 = 24. For example,

4
Z Fia=F+F+Fs+F, +Fy

t=0
=2+34+610+10946 +196418
=(11x31)x610
=(11x31) F. (3.11)

Class 04_sum
When five consecutive Class 04 Fibonacci numbers are added, the sum has a factor

(1 1x 31) as in Class 24. Here n=6w, w=1,2,3,... . Hence,

4

Y Frg =(11x31)F,.,, €04 (3.12)

t=0

because F,,,, € 04 and 34 x34x04 — 04. For instance,

4
Z Fooot =Fs + Fu + Fg+ Fy +Fy
t=0

= 8+ 144 + 2584 + 46368 + 832040
= (11x31)x 2584
= (11x31)F,. (3.13)

Class§_4 sum
The n values for F, 34 are generated by n=4+6v, v=0,1,2.3,... . As for 2, and 04 sums

of five consecutive Fibonacci numbers in 34 follow the pattern of Equation (3.9), but the

sum must fall in 34 because F , € 3, and (11x31)e 1s. For example,

n+1

4
Z F4+6t =F, + FIO + F16 +Fy + Fzs
t=0

=3+55+987+17711+317811
=(11x31)x 987
= (11x31)F,. (3.14)
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Class 14 sum
The Fibonacci numbers in this Class are of three types with =a+6q,a e {1,2,5}. When

five consecutive F, 14 are summed, we get (just as for the other three Classes):

4

Z Fn+6t = (1 1 X 3 1)|:n+12 € i4

t=0

because F,,,, € 1+ and (11x3 1) els. As an illustration, consider

4
z Foa =F +F +F;+Fy+Fy

t=0
=1+13+233+4181+75025
= (11x31)x 233
= (11x31)F,. (3.15)

The same applies to the other 1s types. From Equation (3.1) we have that the sum, S is,
after repeated use of Equation (3.1), given by

S=F,+ Fn+6 +Fn Fn+18 +Foi
=F, +(F6Fn+l + Fan)+(F12Fn+1 + Flan)+
(FISFm—l + F17Fn)+ (F24 I:n-+—1 + F24 F23 Fn)
=49104F,, +30349F,
=(11x31x144)F, +(11x31x89)F,
=(11x31)F,F,,, +F,F,)

127 n+l 11° n
=(11x31)F

(3.16)

(3.17)

n+12-
When the sum of fifteen evenly spaced Fibonacci numbers, all in 14, is taken we find that

S=(11x31)Fy 1 + Fo s + Foa )€ 34 (3.18)

n+12

where n, =14+6Q, N, =2+60, N, =5+6q,  constant for the set. For example, with
g=2,n,=13,n, =14,n, =17, we have

S

(11x31)Fys + Fy + Fyy)
= (11x31)(75025 +121393 + 514229)
= (11x31)(7x7x14503) € 34.
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Sumswith a factor 101
A sum of three Fibonacci numbers yields a factor of 101, but the pattern is more complex
than previously (Table 4).

Sum

Classstructureof F,

Fi.+F;+F,; =101x19
Fio+Fs+Fy =101x2% x 5% x349
Fis +F; +Fy = 101x2° x 78277

F, +Fy, + F,y =101x 661097

i4 +i4 +i4
la+1a+24
la+1a+24
i4 +§4 +§4

Table 4: Sums of three Fibonacci numbers

4. FIBONACCI PRIMES

It is well known that if F, is a prime then p is prime, but if p is prime, then F may be
composite [9] (Table 5).

n F, Factors | Class of (de) Rows Class
n F, n F, Fo Foa

5 5 p 1a 1a 2,0 1 1 3, 04

7 13 p 3. 14 (3.2)| 1 31 o, 1,

11 89 p 3, 1 (8,5) | 2 22| 3, o,

13 233 p L L (13,8) | 3 58 0, L

17 1597 p L L (2134) | 4 399 3, 0.

19 4181 37,113 3. 14 (55,34) | 4 1045 04 14
(41,50)

23 28657 p 3, L (144),89) | 5 7164 | 3, 0,

29 514229 p 1a 1 (610),(377) | 7 128557 3, 04

31 | 1346269 | 557,2417 3. s (987,610) | 7 336567 04 1a
(875,762)

37 | 24157817 | 73,149,2221 | 1, 1, (4181,2584) | 9 6039454 04 1a
(4909,244)

(3859,3044)

Table 5: Fibonacci primes and pseudo-primes [9]

An important feature of Table 5 is that all F, € L. Integers in this Class equal a sum of

squares (d2 + eZ), but primes only have a unique pair of (d,e) with no common factors
[7]. Composites have the same number of (d,e) pairs as they have factors. Thus, all Fibo-
nacci numbers with a prime subscript can be sieved out and then checked for (d,e) pairs.
The d and e for primes are Fibonacci numbers and are simply obtained [7] from




d= F%(M), e= F%([H).
Row and Class patterns for F, and n could also be explored. In Table 5, the composites

occur for repeat rows, for example. It is worth investigating why some sets of five Fibo-
nacci numbers with prime subscripts have a factor of 13 and others do not; for instance,

13|(Fs+F, +F,, +F, +F,)
and
13|(F7 + I:ll + F13 + I:17 + F23)7
but
1"))-I_(Fll + F13 + I:17 + F23 + F29)'

Furthermore, one could look at the patterns of row nesting; that is, the rows of the rows
of the rows... or Meta-Fibonacci sequences [12]).

5. SUMS OF PRODUCTS OF TWO CONSECUTIVE FIBONACCI NUMBERS
It is well known that [9]

2n-1

Z; FiF.=Fa. (5.1)
j=

Equation (5.1) can be generalized as follows:

j-1
kZ: FrcFi = Fj2+1 -F5 (5.2)
=1

with | and J having the same parity. It then follows from Equation (5.2) that

F}-F’=F_F (5.3)

j+io
which is a generalization of the known Identities (I 55 ), (I 26) of [2], namely,

F2,-F’ = F,F

n+p

F2, —F?, =4F.F .

n+l1

2p>»

The question arises whether the difference of squares in Equation (5.2) could equal a
square or some other power? Some examples of Equations (5.2) and (5.3) are shown in
Table 6.

i ] Sum J Fj2+2 -Fl, FioiFii

0 6 440 | 6 212 —12 = 440 8x55=440

1 | 17| 17480757 | 16 17480761-4=17480757 987 x17711=17480757
2] 12 142120 | 10 377% —3% =142120 55x2584 =142120
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| 5| 19]119814747 | 14| 10946> —13> =119814747 | 377x317811=119814747
Table 6: Examples of Equations (5.2) and (5.3)

For an application of the sequence {F F } in Equation (5.1) see [1]. Little is recorded

n' n+l

in the literature about this sequence. If we let

U,= FF

n n' n+l>
then it can be established that {U ,} satisfies the second-order inhomogeneous recurrence

relation
U,=U,,+U_,+2F, - (-)", n>2, (5.4)

with initial conditions U, =L,U, =2.
Proof:
U n = (Fn—l + Fn—z)(Fn + Fn—l)

= U n-1 + U n-2 + Fn2—1 + Fn Fn—z
from which the result follows from the use of Simson’s identity:

Fn Fn—z - I:nz—l = (_ 1)“ "

6. FINAL COMMENTS
Row zero in Z, has integers with right end digits (REDs) (indicated by an asterisk) of

0,1,2,3. This is repeated in the fifth row. The first row has REDs of 4,5,6,7, as does the
sixth row. This regular pattern for the REDs gives rise to periodicity in the REDs of Fib-

onacci numbers. For example, numbers that fall in Class 14 with F. =1, always fall in a
row with a RED of 0 or 5. Some examples of this are set out in Table 7.

Rows REDs
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239180506510
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1013184884470
18180865062035
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F.o 3618083506169055 5
Table 7: Right End Digit Patterns

A periodicity of 60 has been noted for F, =1; when n=2 and 62, for instance [9]. How-
ever, it is more instructive to look at periodicity in terms of the integer structure. When
F =1,F e 3,, the rows r, have REDs of 2 or 7. For example, the REDs of the rows
for F,,,F,Fg,, F are 7,2,7,2, respectively, which shows the interval of 5 as expected.

Note that the periodicity of 60 corresponds to the same RED for the rows. In general,
any Fibonacci number will always have rows such that the intervals for the REDs are 0 or
5; the Fibonacci numbers must be in the same Class (Table 8).

* 3 3 * * *

Fn r.1 r3 I:n rO r.2
1 0,5 2,7 0 0,5 2.7
3 3,8 0,5 2 3,8 0,5
5 1,6 3,8 4 1,6 3,8
7 4,9 1,6 6 4,9 1,6
9 2,7 4,9 8 2,7 4,9

Table 8: F, =4r, +i,1=0,1,2,3

The sequences for the last 2 digits (or 3 digits or n digits) may be analysed similarly. For
instance, using 1, = 01,02,03,04,05,06,07,08,09,00, i € {13}, we can deduce that F, €14

when the last two digits are 01,05,09,13,17,21,25,29,33,37, whereas F, 34 if the last
two digits are 03,07,11,15,19,23,27,31,35 or 39.

Other interesting Fibonacci number results could be analysed with modular rings, such as
Horadam’s Pythagorean number triples [4].
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