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Abstract 

Modular-ring row structures are developed for squares.  In particular, the row 
structures of even squares within the modular ring 6Z  are analysed.  This 
structure is shown to be linked via generalized pentagonal numbers to that of the 
odd squares.  When N|3 , the link is via the triangular numbers.  Equations 
could thus be developed for the rows of those primes that equal a sum of squares.  
Since the results are general they can be used to study in some depth those 
systems that have squares as a dominant feature. 

 
1. Introduction 

The study of squares has been going on since antiquity. All powers equal a difference 
of squares [1], and the sum of the squares has been intensively studied.  For example, 
Pythagoras’ Theorem, and Fermat’s observation that primes in Class 41  of the 
Modular Ring 4Z  equal a sum of squares [2]. 
 
The squares of odd integers are well characterised within this ring, in which the 
integers can be represented by ( )iri +4 , where i  is the class and r the row in a 
modular array. In 4Z , the square of an odd integer, N,  (3┼N), is given by [1] 

1)6(42 += KN  (1.1)
where 
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Here, iK  is a generalized pentagonal number. 
If 3|N, then the row of the square, 1R , is given by 
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with 
),3(6

1 −= Nj   
and )1(2

1 +jj  are the triangular numbers. 
For the modular ring 6Z  (where )3(6 −+= irN i ), 

,1)4(62 += KN  (1.4)
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except when 3|N; for this case, see Section 2, Class 63  . 
We have recently shown [3] that when 1nn =  , then )16(,2 26 −=∈ rNN , but if 

2nn = , then )16(,4 46 +=∈ rNN .  Of course, just as for 4Z , so too in 6Z  one of the 

classes of odd integers does not contain any even exponents, that is Class 443 Z∈  and 
.2 66 Z∈  

Thus while the rows of odd squares are well characterised, this is not the case for the 
even integers.  Our first task here, then, is to analyse the rows of even integers.  We 
shall confine our study to 6Z  since the results can be readily applied to other modular 
rings. 
 

2. Squares of Even Integers in 6Z  

2.1 Class 61  
In this Class, 

( ) .126 61 ∈−= rN   

1r  even.  
When the row is even, ½N is odd, so that N=2Q where Q is odd and falls in 62 .  
Hence, as odd squares only fall in 64 . 

,1)4(62
4

1 += KN  (2.1)
 and 

,2)116(62 −+= KN  (2.2)
so that the row of the Square, 1R , equals (16K+1), with 

),13( 112
1 −= nnK   

as 62∈Q . 
 

1r  odd. 
In this case 

.,...5,4,3,2,2 == mQN m  (2.3)
The row functions depend on the parity of m but, in general, 

,,...3,2,1,0,21 =+= ttAr m  (2.4)
while the functions for A are listed in Table 1. 
 

Class m A Class of Q 
61  even 

odd 
( )226

1 +m  
( )2256

1 +× m  
64   
62   

65  even 
odd 

( )2256
1 −× m  

( )226
1 −m  

62   
64   

Table 1: Functions for rows of integers in 61  and 65  (Equation (2.4)) 
 
From Equation (2.3) 
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222 2 QN m=  (2.5)

and since the squares all fall in Class 61  
26 1

2 −= RN  (2.6)
with 1R  the row of the square.  Hence, 

( ).22 22
6

1
1 += QR m  (2.7)

Furthermore, since ,26 1 −= rN  then 
,42436 1

2
1

2 +−= rrN  (2.8)
so that 

146 1
2

11 +−= rrR  (2.9)
with 1r  given by Equation (2.4) and Table 1. 
 
m even 
For this case, with 64∈Q  (Table 1), 

( )24
22 162 += rN m  (2.10)

with 4r  the row of 64∈Q  (Table 1).  Then, since the row of this odd integer squared 
is 4K, (Equation (1.4)), 

( )1)4(6222 += KN m  (2.11)
with 

),13( 222
1 += nnK  

so that 
( ) )3/1()6/1(422

1 ++= KR m  (2.12)
and 

( ) )3/1()6/1(262 2
2
2

2
1 +++= nnR m  (2.13)

with 2n  being the row of 64∈Q . 
Alternatively, using Equation (2.9) and Table 1, we get 

( ) ).3/1()6/1(262 22
1 +++= ttR m  (2.14)

Hence, 
.2 tn =  

 
m odd 
Similarly, 

( ) ,162 2
2

22 −= rN m  
and 

26 1
2 −= RN  (2.15)

where 2r  is the row of 62∈Q  and 1R  the row of 6
2 1∈N .  Since 62  has no squares 

and 
( ) ,1)4(616 /2

2 +=− Kr  
then 

( ) )3/1()6/1(42 /2
1 ++= KR m  (2.16)
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with 
),13( 112

1/ −= nnK  
as .26∈Q   Thus, with 1n  the row of 62∈Q , 

( ) ).3/1()6/1(262 1
2
1

2
1 ++−= nnR m  (2.17)

Using Equation (2.9) and Table 1, and comparing the 1R  function with that obtained 
in Equation (2.17), we obtain 

.11 += tn  
Some examples are given in Table 2. 
 

N 1r  Q Class of Q m A t n 1R  
28 5 7 64  2 1 1 1 131 
88 15 11 62  3 7 1 2 1291 

172 29 43 64  2 1 7 7 4931 
544 91 17 62  5 27 2 3 49323 
6400 1067 25 64  8 43 4 4 6826667

Table 2: Examples of Equations (2.13) and (2.17) 
 
2.2 Class 65  
In this Class, 

.26 5 += rN   

When integers from this Class are squared, the resultant lies in Class 61 , since 65  
contains no even powers. 
 

5r even 

As for 61 , when 5r  is even, 
N=2Q,  

where Q is odd but falls in 64  , in this case, with a row equal to 4K.  Hence, 
2)116(62 −+= KN  (2.18)

and 
,1161 += KR   

with 
),13( 222

1 += nnK   

since .46∈Q  
 

5r  odd 
 
As for ,16  

,2 QN m=  (2.19)
with m=2,3,4,5,…, and 
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,26 5 += rN  (2.20)
with 

.25 tAr m+=  (2.21)
The functions for A are listed in Table 1. 

222 2 QN m=  (2.22)

and since integers in 65 , when squared, fall in 61 , 
26 1

2 −= RN  (2.23)
so that 

( )( ).226/1 22
1 += QR m  (2.24)

Moreover, from Equation (2.20), 
1436 5

2
5

2 ++= rrN  (2.25)

with 5r  from Table 1. 
 
m even 
 

62∈Q  (Table 1) so that 
( )2

2
22 162 −= rN m  (2.26)

with 2r  the row of Q.  But 
( ) 1616 4

2
2 +=− Rr  

with  
,44 KR =  

so that 
( )( )146222 += KN m  (2.27)

with 
( ),12 112

1 −= nnK  
so that 

( )( ) ( )
( )( ) ( )3/16/1262

3/16/142

1
2
1
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(2.28)

with 1n  being the row of 62∈Q . 
Alternatively, using Equation (2.25) and Table 1, we get 
 

( )( ) ( )( ) ( )3/16/114622
1 ++++= ttR m . (2.29)

 
 When ( )tn += 11  is substituted into Equation (2.28), one gets Equation (2.29), which 
shows that .11 −= nt  
 
m odd 
 
Here 64∈Q  (Table 1), in row ,4r  so that 
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(2.30)

with 
( ) ( ) ,14616 /2

4 +=+ Kr  (2.31)
so that  

( )( ) ( )3/16/142 /2
1 ++= KR m  (2.32)

with 
( ),13 222

1/ += nnK  

as .46∈Q   Thus 
( )( ) ( )3/16/1262 2

2
2

2
1 +++= nnR m  (2.33)

with 2n  being the row of 64∈Q , that is, 4r .  Using Equation (2.25) and Table 1, we 
get 

( )( ) ( )3/16/1262 22
1 +++= ttR m  (2.34)

which shows that 2nt =  in this case. 
 
Class 63  
 
In this Class, 

36rN =  

and obviously 6
2 3∈N , that is, 

.6 3
2 RN =  

 
3r  odd 

Unlike Classes 66 5,1 , ½N will be odd when N is in an odd numbered row, and 
N=2Q (2.35)

where  3|Q, so that Q always falls in Class 66 , that is 
.36 6 += rQ  

The row of a square in ,,6 66 R  is given by 

∑
=

+=
j

i
iR

1
6 121  

 
(2.36)

from the 4Z  row (Equation (1.3)).  Thus, with 
,612244 36

22 RRQN =+==  (2.37)
so that 
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where i refers to iQ   (for example, the (N,i) sequence for 66  is {(3,0), (9,1), (15,2), 
(21,3), …).  In effect, .6rj ≡  Note that this is in contrast to 4Z  where integers 3|N 
have ( )36

1 −= Nj , because .61 =− −ii NN  
 

3r  even 
In this case,  

QN m2= , (2.39)
and 

( ) .63622 36
2222 RRQN mm =+==  (2.40)

Thus 

( )( ).14132

8132
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(2.41)
 
When m=1, Equation (2.41) becomes Equation (2.38).  The results for this Class are 
much simpler than those for 61  and 65 .  This is because 

• Q falls in only one class, 
• 3 is a common factor, and 
• the term ( )( )36 −+ iri  has i=3 so that there is no constant. 

 
 

3. Primes as a Sum of Squares 
Primes, p, which fall in 441 Z∈  (that is, 14 1 += rp ) equal a unique sum of squares, 
( )22 yx + , where (x,y)=1 [2].  Fermat appears to have been the first to have 
established this.  In 6Z , these primes fall in 62  in odd rows or in 64  in even rows [3] 
(Table 3). 
 

p Class in 4Z  4r  Class in 6Z  ir  i 
5 41  1  62  1 2 
13 41  3 64  2 4 
17 41  4 62  3 2 
29 41  7 62  5 2 
37 41  9 64  6 4 

Table 3: Examples of 22 yxp +=  
 
Consider the primes in Class 62  in odd rows. There will be certain constraints on the 
Classes of x and y (Table 4). 
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Table 4: Class structures 

 
However, all the odd squares will fall in 64  and the even squares in 61 .  Thus 
( )22 yx +  or p, will fall in the row ( ) 641 2∈+ RR , where 1R  is the row of 2y  and 4R  
is the row of 2x .  On the other hand, primes in 64  in even rows will have  ( )22 , yx  
pairs in Classes ( )66 3,4  and ( )66 1,6  with the corresponding rows for p of ( )34 RR +  
and ( )16 RR + . 
 
For primes in 62  in odd rows, and with 62∈x  in row 1n , 
 

( ).1324 114 −== nnKR  
 
With the row of y even, ( )1161 += KR  where ( )/

1nfK =  when 61∈y  or ( )/
2nfK =  

when 65∈y  (Section 2).  Thus, in the simplest case, when y is in an even row, pr , 

the row of the prime in 62 , is given by 
 

( ) ( )
( ) ( )⎩

⎨
⎧

∈+++−
∈+−+−

=
.5,1138132
,1,1138132

6
/
2

/
211

6
/
1

/
111

ynnnn
ynnnnrp  (3.1)

 
These rows are obviously odd. 
 
When ( )13,4 222

1
6 +=∈ nnKx  and the first term on the right hand side of Equation 

(3.1) becomes ( )132 22 +nn .  When the row of y is odd, Equations (2.13) and (2.17) 
give 1R  for 61∈y , while Equations (2.28) and (2.33) give 1R  for 65∈y .   
 
Examples are given in Table 5, with x=5, 1,2 16 =n . 
 
 
 
 
 

 p x y 2x  2y   
 62  62  61  64  61   
  62  65  64  61   
  64  61  64  61   
  64  65  64  61   
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Q=½y Class of ½y /
1n  pr  Prime ( 16 −pr ) 

11 62  2 85 509 
17  3 197 1181 
23  4 357 2141 
29  5 565 3389 
47  8 1477 8861 
53  9 1877 11261 
77  13 3957 23741 
83  14 4597 27581 
101  17 6805 40829 
107  18 7637 45821 
131  22 11445 68669 

Table 5(a): Examples of Equation (3.1) [y in even row in 61 ] 
 

Q=½y Class of ½y /
2n  pr  Prime ( 16 −pr ) 

1 64  0 5 29 
13  2 117 701 
37  6 917 5501 
49  8 1605 9629 
67  11 2997 17981 
73  12 3557 21341 
79  13 4165 24989 
91  15 5525 33149 
103  17 7077 42461 
151  25 15205 91229 
157  26 16437 98621 

Table 5(b): Examples of Equation (3.1) [y in even row in 65 ] 
 
It is of interest that, within the range of Table 5, ½y is always a prime or 7|½y, while 
the right end digits (REDs) are very restricted, that is ( ) { })1,7(),9,5(, ** ∈prp . 
 
The /

2
/
1 , nn  values in Table 5 are sequential, but the rules of formation are not yet 

known.  Table 6 gives examples of row sequences for various values of 62∈x .  
There are generally more members for /

2n  than for /
1n .  Obviously, if the recurrence 

relations for these sequences could be defined, then the associated primes could be 
directly predicted from ( )16 −pr .  The same applies for Class 64 .  For example, when 

x=5, /
1n  as a j sequence follows 

kiiii ωβαβα ++=+ ++ 11  
with  

kω =0,0,0,0,5,4,0,0,0,0,2,1,…, 
α=even j, β= odd j; maximum prime tested is 702269. 
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x Row 1n  /

1n  /
2n  

5 1 {2,3,4,5,8,9,13,14,17,18,22,28, 
30,32};{0,1,2,3,5,6,10,11,13}* 

{0,2,6,8,11,12,13,15,17,25,26,28,
31,32,33};{3,7,10,12,13}* 

11 2 {3,4,6,11,19,26} {1,2,4,7,11,14,17,22,24,26} 
17 3 {1,2,6,7,11,15,16} {0,3,4,5,10,13,15,19,23,24,25} 
23 4 {2,7,12,15,16,17,20,21}; 

{4,6,7,11,12}* 
{3,5,8,9,10,14,20,23,24,25}; 
{1,3,4,6,13}* 

29 5 {1,3,4,6,8,26} {6,7,9,11,12,14,21,22,26} 
Table 6: m=1, 61∈y  (row of Q= /

1n ) or 65∈y  (row of Q= /
2n ); *m=2. 

 
4. Concluding Comments 

The rows of even squares are often primes, so that, unlike the rows of odd squares, 
they are not simply defined.   
 
However, the row, 1R , (which contains all even squares when 3┼N) does have 
specific REDs which correspond to a particular RED for x.  Furthermore, certain 
REDs for y are incompatible with x* values (Table 7).  Of course, when 36 ,3 Ry∈ , 
the row of 2y , will have 6 as a factor. 
 

x* *
1R  Incompatible y* 

1,9 3,7 2,8 
3,7 1,7 4,6 
5 1,3 0 
Table 7: Some examples of incompatible REDs 

 
By extracting twos, we have linked the generalized pentagonal numbers, iK , for the 
odd squares with the corresponding iK  values for the odd part of the even squares.  
(When 3|N, the link is through the triangular numbers.)  This gives a unifying picture 
of the row structure which can be used to advantage when studying systems which 
feature squares, as illustrated by the examples we have given. 
 
Another system of interest would be Pythagorean Triples which present odd and even 
square relationships (cf. [4]).   Indeed, any study which involves squares can be 
analysed in more depth by using these modular-ring/row structures as a basis for 
interpretation.  For example, consider the primitive Pythagorean triple (233,208,105).  
The components have the class structure < 666 6,1,2 >, while their squares have the 
structure < 666 6,1,4 >, so that the row function for the squares is 
 

614 RRR +=  (4.1)
and with 176 =r , 
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( ) ,1837)117(1761121
1

6 =++=+= ∑
=

j

i
iR  

 

and 
)13(24 114 −== nnKR   

and 
3921 == rn   

so that 
90484 =R   

and 
( ) )3/1()6/1(262 2

2
2

2
1 +++= nnR m   

so that with m=4, Q=13 (row = 2n =2) 
.72111 =R   

These results satisfy Equation (4.1). 
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