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The 25-th and 26-th problems from [1] (see also 30-th and 31-st problems from [2])

are the following:

25. Smarandache’s cube free sieve:
2,3,4,5,6,7,9,10,11,12,13,14,15,17, 18,19, 20, 21, 22, 23, 25, 26, 28, 29,

30,31, 33,34, 35,36,37,38,39,41,42,43, 44, 45, 46,47,49, 50, 51, 52, 53, 55,
57,58,59,60,61,62,63,65,66,67,68,69,70,71,73, ...

Definition: from the set of natural numbers (except 0 and 1):
— take off all multiples of 23 (i.e. 8,16,24,32,40,...)
— take off all multiples of 3*
— take off all multiples of 5
. and so on (take off all multiples of all cubic primes).

(One obtains all cube free numbers.)

26. Smarandache’s m-power free sieve:

Definition: from the set of natural numbers (except 0 and 1) take off all multiples of 2™,
afterwards all multiples of 3™ ... and so on (take off all multiples of all m-power primes,
m = 2).

(One obtains all m-power free numbers.)

Here we shall introduce the solutions of both these problems.

For every natural number m we denote the increasing sequence a\™,a{™, a{™, ... of

all m-power free numbers by m. Then we have

0

1c2..cm=-1)cmc(m+1)C..
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Also, for m > 2 we have

where
2)F = {x | Ay, ..., 2k € 2)(z = T1.73. ... Tk)

for each natural number £ > 1.

Let us consider 7 an infinite sequence for m = 2,3, .... Then 2 is a subsequence of m.
Therefore, the inequality

™ < ot

holds for n =1,2,3,....

Let py = 2,p; = 3,p3 = 5,ps = T,... be the sequence of all primes. It is obvious that

this sequence is a subsequence of 2. Hence, the inequality
a?) < p,

holds for n = 1,2,3,.... But it is well known that

n®+3n+4
At )

(see [3]). Therefore, for any m > 2 and n = 1,2,3, ... we have

pn S A(n) =]

a™ < a® < \(n). (2)

Further, we will find an explicit formula for ai,m) when m > 2 is fixed.

1, >0
sg(e) = {

Let for any real «

0, <0
We define
em(k)={ 1, kEﬁT-
0, kgm
Hence,

Tm(n) = Zem(k), (3)
k=2

where m(n) is the number of terms of set m, which are not greater than n. Using the

relation :
m —
W) =so( I 577D
- plk
p 1s prime
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we rewrite (3) in the explicit form

=Y s I () (4
k=2 L4
plk

p 1s prime

Then, using formulae (1')-(3’) from [4] (which are the universal formulae for the n-th
term of an arbitrary increasing sequence of natural numbers), and (2), with A(n) from

(1), we obtain
A=Y [— ) )

k=0 1 + [WL_]‘R(EZ]

A(n)

e oo Tm(k)
M =-2) ((=2(" ) (6)
k=0
(a representation using Riemann’s function ()

(7)

(a representation using Euler’s function I').

We note that (5)-(7) are explicit formulae, because of (4).

Thus, the 26-th Smarandache’s problem is solved and for m = 3 the 25-th Smaran-
dache’s problem is solved, too.

For m = 2 we have the representation

e2(k) = |u(k)|

(here g is the Mobius function);

w(k)
(k) = B

where w(k) denotes the number of all different prime divisors of k and
(k) =) 1.
dlk

Hence,
n n 2w(k)

ma(n) = Y (k)| = ety
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The following problems are interesting.
Problem 1: Is there a constant C' > 1, such that A(n) < C.n?
Problem 2: Is C' <27

Below we give the main explicit representation of function 7m(n), that takes part in
formulae (5)-(7). In this way we find the main explicit representation for al™, that is
based on formulae (5)-(7), too.

Theorem: Function 7(n) allows representation
{3 = e _1ye [
Tm(n) =n—1+4 i Z (-1) .[Sm]. (8)
se2n{2,3,...,[ ¥n]}

Proof: First, we shall note that the sum in the right hand of (8) is over only these

natural numbers s, smaller than [ {/n], for which s € 2, i.e., over these natural numbers
s for which p(s) # 0.
Let {b{™}>_, be the sequence defined by

B™ =1, 8™ = al™) for n > 2. 9)

We shall denote this sequence by m*.

Let m,,+(n) denote the number of terms of m*, which are not greater than n. Then we

have relation
Tm(n) = Tme(n) — 1, (10)

because of (9).

Let ¢(™)(k) be the function given by

1, kem*
(m) (k) = ’ ) 11
9™ (k) {0, ke me (11)

Then ¢'™ (k) is a multiplicative function with respect to k, i.e., g™ (1) = 1 and for

every two natural numbers a and b, such that («,b) = 1, relation

9™ (a.b) = ¢"™(a).g"™(b)
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holds.

Let function f™ (k) be introduced by

P = 3 e (12)

d/k

Using (12) for k = p®, where p is an arbitrary prime and « is an arbitrary natural
g 1 I
number, we obtain
F ) = g™ ™) — g™ (™).

Hence,

0, a<m

f(m)(Pa) = -1, a=m,
0, a>m

because of (11).
Hence, f(™)(1) =1 and for k > 2 we have

Fom) () = { (=1)“® if k is an m-power natural number and k € 2 ’ (13)

0, otherwise

since f(™) (k) is a multiplicative function with respect to k, because of (12).

Using the Mobius inversion formula, equality (12) yields

g™ (k Zf(m)(d (14)

d/k

Now, we use (14) and the obvious representation
Tme(n) = g™ (k) (15)
k=1

in order to obtain

Tms (0) Z > ™) (16)

k=1 d/k

Then (16) and the identity
PP ARCEDIFARION (17)
k=1 d/k k=1 ’

both yield

Tme(n) = > fOR).[] (18)

k=1
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From (13) and (18) we obtain (8), because of (10) and the fact that f(™)(1) = 1. The
theorem is proved.

Finally, we must note that some authors call function (—1)“(*) unitary analogue of the
Mébius function y(s) and denote this function by w*(s) (see [5, 6]). So, if we agree to use

the last notation, we may rewrite formula (8) in the form

. n
mm(n) =n—1+ i Z 7 (s)[;;n-]
s€20{2,3,...[ /Al
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