On the Hadamard product of GCD and LCM matrices associated with semi-multiplicative functions

Ayse Nalli ${ }^{1}$ and Pentti Haukkanen ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Literature, University of Selcuk 42070 Campüs Konya, Turkey
${ }^{2}$ Department of Mathematics, Statistics and Philosophy, FIN-33014 University of Tampere, Finland

Abstract

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an ordered set of distinct positive integers with $\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{n}}(\mathrm{n}>1)$. We provide some properties for the $\mathrm{n} \times \mathrm{n}$ matrix $(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}$ on S, where $(G)_{f}$ denotes the $n \times n$ GCD matrix on S associated with $f,[L]_{f}$ denotes the $\mathrm{n} \times \mathrm{n}$ LCM matrix on S associated with f and o denotes the Hadamard product.

Keywords: Hadamard product, GCD matrix, LCM matrix, semi-multiplicative function.

2000 Mathematics Subject Classification: 11C20, 11A05, 15A36, 11A25.

1. Introduction

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an ordered set of distinct positive integers with $\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{n}}(\mathrm{n}>1)$ and let f be an arithmetical function. The $\mathrm{n} \times \mathrm{n}$ matrix $(\mathrm{G})_{\mathrm{f}}$ is called the GCD matrix on S associated with f, where the i, j-entry is f evaluated at the greatest common divisor of x_{i} and x_{j}, that is, the i, j-entry of $(G)_{f}$ is $\mathrm{f}\left(\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)\right)$. The $\mathrm{n} \times \mathrm{n}$ matrix $[\mathrm{L}]_{\mathrm{f}}$ is called the LCM matrix on S associated with f, where the i, j-entry is f evaluated at the least common multiple of x_{i} and x_{j}, that is, the i, j-entry of $[L]_{f}$ is $f\left(\left[X_{i}, X_{j}\right]\right)$.
H. J. S. Smith [7] calculated the determinant of the GCD and LCM matrices under certain conditions. Since Smith a large number of results on GCD and LCM
matrices have been presented in the literature. For general accounts see e.g. [2], [3] and [5].

Beslin [1] studies the determinant of the LCM matrix and the reciprocal GCD matrix on S, that is, the determinant of the matrices, whose i, j-entries are $\left[x_{i}, x_{j}\right]$ and $1 /\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$, respectively. Tuglu and Tasci [8] study the determinant, the trace and the inverse of the Hadamard product of the LCM matrix and the reciprocal GCD matrix on S .

In this paper we study basic properties of the Hadamard product $(\mathrm{G})_{f} \mathrm{o}[\mathrm{L}]_{f}$ of the GCD and LCM matrix on S associated with a semi-multiplicative function f . We show that $\operatorname{det}\left((G)_{f} o[L]_{f}\right)=0$, determine the eigenvalues and eigenvectors of $(G)_{f}$ $o[L]_{f}$ and evaluate certain norms of $(G)_{f} o[L]_{f}$.

2. Results

Let f be a real-valued arithmetical function. Then f is said to be semimultiplicative if $\mathrm{f}(\mathrm{r}) \mathrm{f}(\mathrm{s})=\mathrm{f}((\mathrm{r}, \mathrm{s})) \mathrm{f}([\mathrm{r}, \mathrm{s}])$ for all positive integers r and s . Semimultiplicative functions f with $f(1) \neq 0$ are quasi-multiplicative functions, and quasimultiplicative functions f with $f(1)=1$ are the usual multiplicative functions. Multiplicative functions f with $f\left(p^{e}\right)=f(p)^{e}$ for all prime powers p^{e} are completely multiplicative functions. See [3, 6].

Throughout this section let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an ordered set of distinct positive integers with $\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{n}}(\mathrm{n}>1)$ and let f be a semi-multiplicative function.

The Hadamard product of the $\mathrm{n} \times \mathrm{n}$ matrix $(\mathrm{G})_{\mathrm{f}}$ and the $\mathrm{n} \times \mathrm{n}$ matrix $[\mathrm{L}]_{\mathrm{f}}$ on S is defined as $(G)_{f} o[L]_{f}=\left(f\left(\left(x_{i}, x_{j}\right)\right) f\left(\left[x_{i}, x_{j}\right]\right)\right)$. Since f is a semimultiplicative function, we have

$$
\begin{equation*}
(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{~L}]_{\mathrm{f}}=\left(\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)\right) . \tag{2.1}
\end{equation*}
$$

Note that the $\mathrm{n} \times \mathrm{n}$ matrix $(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}$ on S is symmetric.

Theorem 2.1. $\operatorname{det}\left((G)_{f} o[L]_{f}\right)=0$.

Proof. From (2.1) we obtain

$$
\left.\operatorname{det}\left((\mathrm{G})_{\mathrm{f}} \mathrm{O}[\mathrm{~L}]_{\mathrm{f}}\right)\right)=\mathrm{f}\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{2}\right) \ldots \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right) \operatorname{det}\left|\begin{array}{cccccc}
f\left(x_{1}\right) & f\left(x_{1}\right) & . & . & . & f\left(x_{1}\right) \\
f\left(x_{2}\right) & f\left(x_{2}\right) & . & . & . & f\left(x_{2}\right) \\
\cdot & \cdot & . & & & \cdot \\
\cdot & \cdot & & . & & \cdot \\
\cdot & \cdot & & & . & \cdot \\
f\left(x_{n}\right) & f\left(x_{n}\right) & . & . & . & f\left(x_{n}\right)
\end{array}\right|
$$

Thus $\operatorname{det}\left((G)_{f} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}\right)=0$. This completes the proof.

Corollary. The $\mathrm{n} \times \mathrm{n}$ matrix $(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}$ on S is always singular.

Theorem 2.2. Let f be a semi-multiplicative function with $f(r) \neq 0$ for all r. The eigenvalues of the $\mathrm{n} \times \mathrm{n}$ matrix $(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}$ on S are

$$
\lambda_{1}=\operatorname{tr}\left((\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{~L}]_{\mathrm{f}}\right), \lambda_{2,3, \ldots, \mathrm{n}}=\operatorname{det}\left((\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{~L}]_{\mathrm{f}}\right)=0
$$

Proof. Let $\lambda_{i}, \mathrm{i}=1,2, \ldots, \mathrm{n}$, denote the eigenvalues of the $\mathrm{n} \times \mathrm{n}$ matrix $(\mathrm{G})_{\mathrm{f}}$ $\mathrm{o}\left[\mathrm{L} \mathrm{f}\right.$. Let $\operatorname{alg}\left(\lambda_{i}\right)$ denote the algebraic multiplicity of λ_{i}, that is, $\operatorname{alg}\left(\lambda_{i}\right)$ is the multiplicity of λ_{i} as a zero of the characteristic polynomial of $(\mathrm{G})_{\mathrm{f}} \mathrm{O}[\mathrm{L}] \mathrm{f}$, and let $\operatorname{geom}\left(\lambda_{i}\right)$ denote the geometric multiplicity of λ_{i}, that is, $\operatorname{geom}\left(\lambda_{i}\right)$ is the dimension of the eigenspace of $(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}$ corresponding to the eigenvalue λ_{i} (see [4]). Since the matrix $(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}$ is symmetric, it is diagonalizable. Thus $\operatorname{alg}\left(\lambda_{i}\right)=$ $\operatorname{geom}\left(\lambda_{i}\right)$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$. Since the matrix $(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}$ is singular, $\lambda_{i}=0$ for some $\mathrm{i}=1,2, \ldots, \mathrm{n}$, say $\lambda_{n}=0$. Then $\operatorname{alg}\left(\lambda_{n}\right)=\operatorname{geom}\left(\lambda_{n}\right)=\operatorname{geom}(0)=\mathrm{n}-$ $\operatorname{rank}\left((\mathrm{G})_{\mathrm{f} O}[\mathrm{~L}]_{\mathrm{f}}\right)=\mathrm{n}-1$. This means that the multiplicity of λ_{n} as a zero of the characteristic polynomial is equal to $n-1$. We thus may denote $\lambda_{2}=\lambda_{3}=\ldots=\lambda_{n}=0$. Since the sum of eigenvalues is equal to $\operatorname{tr}\left((\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{\mathrm{f}}\right)$, we have $\lambda_{1=}=\operatorname{tr}\left((\mathrm{G})_{\mathrm{f}} \mathrm{O}[\mathrm{L}]_{\mathrm{f}}\right)$. This completes the proof.

Theorem 2.3. Let f be a semi-multiplicative function with $\mathrm{f}(\mathrm{r}) \neq 0$ for all r . Then eigenvectors corresponding to the eigenvalues of the $n \times n$ matrix $(G)_{f} o[L]_{f}$ on S are

$$
y_{1}=\left\lfloor\begin{array}{c}
\frac{f\left(x_{1}\right)}{f\left(x_{n}\right)} \\
\cdot \\
\cdot \\
\frac{f\left(x_{n-1}\right)}{f\left(x_{n}\right)} \\
1
\end{array}\right\rfloor, y_{2}=\left\lfloor\begin{array}{c}
-\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)} \\
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right\rfloor, y_{3}=\left\lfloor\begin{array} { c }
{ - \frac { f (x _ { 3 }) } { f (x _ { 1 }) } } \\
{ 0 } \\
{ 1 } \\
{ 0 } \\
{ \cdot } \\
{ 0 }
\end{array} \left|, y_{4}=\left|\begin{array}{c}
-\frac{f\left(x_{4}\right)}{f\left(x_{1}\right)} \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right|, \ldots, y_{n}=\left\lfloor\begin{array}{c}
-\frac{f\left(x_{n}\right)}{f\left(x_{1}\right)} \\
0 \\
0 \\
. \\
\cdot \\
1
\end{array}\right\rfloor .\right.\right.
$$

Proof. If λ_{i} is an eigenvalue of the $n \times n$ matrix $(G)_{f} o[L]_{f}$, the correspondings eigenvectors Y_{i} are the solutions of

$$
\begin{equation*}
\left(\lambda_{i} I-(G)_{f} o[L]_{f}\right) Y_{i}=0 . \tag{2.2}
\end{equation*}
$$

We first calculate the eigenvector corresponding to $\lambda_{1}=$ $\operatorname{tr}\left((\mathrm{G})_{\mathrm{f}} \mathrm{o} \quad[\mathrm{L}]_{\mathrm{f}}\right)$. From (2.2) ,

$$
\begin{equation*}
\left(\left(f\left(x_{1}\right)^{2}+f\left(x_{2}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}\right) I-(G)_{f} o[L]_{f}\right) Y_{1}=0 . \tag{2.3}
\end{equation*}
$$

If we denote unknown vectors Y_{1} by $\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right]^{\mathrm{T}}$, then (2.3) becomes

$$
\left[\begin{array}{cccc}
f\left(x_{2}\right)^{2}+\ldots+f\left(x_{n}\right)^{2} & -f\left(x_{1}\right) f\left(x_{2}\right) & \ldots & -f\left(x_{1}\right) f\left(x_{n}\right) \\
-f\left(x_{2}\right) f\left(x_{1}\right) & f\left(x_{1}\right)^{2}+f\left(x_{3}\right)^{2}+\ldots+f\left(x_{n}\right)^{2} & \ldots & -f\left(x_{2}\right) f\left(x_{n}\right) \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
-f\left(x_{n}\right) f\left(x_{1}\right) & \cdot & \ldots & f\left(x_{1}\right)^{2}+f\left(x_{2}\right)^{2}+\ldots+f\left(x_{n-1}\right)^{2}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right]
$$

By using elementary row operations, the coefficient matrix of this homogeneous system becomes

$$
\left[\begin{array}{ccccccc}
1 & \frac{-f\left(x_{1}\right) f\left(x_{2}\right)}{f\left(x_{2}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}} & \ldots & \frac{-f\left(x_{1}\right) f\left(x_{p}\right)}{f\left(x_{2}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}} & \ldots & \frac{-f\left(x_{1}\right) f\left(x_{n-1}\right)}{f\left(x_{2}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}} & \frac{-f\left(x_{1}\right) f\left(x_{n}\right)}{f\left(x_{2}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}} \\
0 & 1 & \ldots & \frac{-f\left(x_{2}\right) f\left(x_{p}\right)}{f\left(x_{3}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}} & \ldots & \frac{-f\left(x_{2}\right) f\left(x_{n-1}\right)}{f\left(x_{3}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}} & \frac{-f\left(x_{2}\right) f\left(x_{n}\right)}{f\left(x_{3}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}} \\
. & \ldots & . & \ldots & . & \ldots & \frac{-f\left(x_{p}\right) f\left(x_{n-1}\right)}{f\left(x_{p+1}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}}
\end{array} \frac{-f\left(x_{p}\right) f\left(x_{n}\right)}{f\left(x_{p+1}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}}\right)
$$

Since the rank of the coefficient matrix of this homogeneous system is equal to $\mathrm{n}-1$, there exist infinitely many solutions dependent on one parameter. The solution to this set of equations is

$$
y_{1}=\frac{f\left(x_{1}\right)}{f\left(x_{n}\right)} t, y_{2}=\frac{f\left(x_{2}\right)}{f\left(x_{n}\right)} t, \ldots, y_{n-1}=\frac{f\left(x_{n-1}\right)}{f\left(x_{n}\right)} t, y_{n}=t,
$$

where t is arbitrary. In this case, linearly independent eigenvector corresponding to $\lambda_{1}=\operatorname{tr}\left((\mathrm{G})_{\mathrm{f}} \mathrm{O}[\mathrm{L}]_{\mathrm{f}}\right)$ is equal to

$$
\left[\frac{f\left(x_{1}\right)}{f\left(x_{n}\right)}, \frac{f\left(x_{2}\right)}{f\left(x_{n}\right)}, \ldots, \frac{f\left(x_{n-1}\right)}{f\left(x_{n}\right)}, 1\right]^{T} .
$$

Now we calculate the eigenvectors corresponding to $\lambda_{2,3, \ldots, n}=0$. From (2.2),

$$
\left[\begin{array}{ccccc}
-f\left(x_{1}\right)^{2} & -f\left(x_{1}\right) f\left(x_{2}\right) & \ldots & -f\left(x_{1}\right) f\left(x_{n-1}\right) & -f\left(x_{1}\right) f\left(x_{n}\right) \\
-f\left(x_{2}\right) f\left(x_{1}\right) & -f\left(x_{2}\right)^{2} & \ldots & -f\left(x_{2}\right) f\left(x_{n-1}\right) & -f\left(x_{2}\right) f\left(x_{n}\right) \\
\cdot & \cdot & \ldots & \cdot & \cdot \\
\cdot & \cdot & \ldots & \cdot & \cdot \\
\cdot & \cdot & \ldots & \cdot & \cdot \\
-f\left(x_{n}\right) f\left(x_{1}\right) & -f\left(x_{n}\right) f\left(x_{2}\right) & \ldots & -f\left(x_{n}\right) f\left(x_{n-1}\right) & -f\left(x_{n}\right)^{2}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right] .
$$

By using elementary row operations, the coefficient matrix of this homogeneous system becomes

$$
\left[\begin{array}{ccccc}
-f\left(x_{1}\right)^{2} & -f\left(x_{1}\right) f\left(x_{2}\right) & \ldots & -f\left(x_{1}\right) f\left(x_{n-1}\right) & -f\left(x_{1}\right) f\left(x_{n}\right) \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
. & . & \ldots & . & . \\
. & . & \ldots & . & . \\
0 & 0 & \ldots & 0 & 0
\end{array}\right] .
$$

Since the rank of the coefficient matrix of this homogeneous system is equal to 1 , there exist infinitely many solutions dependent on $\mathrm{n}-1$ parameters. The solution to this set of equations is

$$
y_{1}=-\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)} t_{2}-\frac{f\left(x_{3}\right)}{f\left(x_{1}\right)} t_{3}-\ldots-\frac{f\left(x_{n}\right)}{f\left(x_{1}\right)} t_{n}, y_{2}=t_{2}, y_{3}=t_{3}, \ldots, y_{n}=t_{n},
$$

where $t_{2}, t_{3}, \ldots, t_{n}$ are arbitrary. In this case, linearly independent eigenvectors corresponding to $\lambda_{2,3, \ldots, \mathrm{n}}=0$ are

$$
\left.\left[\begin{array}{c}
-\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)} \\
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right], \left.\left\lfloor\begin{array}{c}
-\frac{f\left(x_{3}\right)}{f\left(x_{1}\right)} \\
0 \\
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right\rfloor \right\rvert\, \begin{array}{c}
-\frac{f\left(x_{4}\right)}{f\left(x_{1}\right)} \\
0 \\
0 \\
1 \\
0 \\
\cdot \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
-\frac{f\left(x_{n}\right)}{f\left(x_{1}\right)} \\
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right] .
$$

This completes the proof.

Remark Since the matrix $(\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{f}$ is symmetric, it is diagonalizable. In view of Theorems 2.2 and 2.3 we write

$$
\mathrm{P}=\left[\begin{array}{cccccc}
\frac{f\left(x_{1}\right)}{f\left(x_{n}\right)} & -\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)} & -\frac{f\left(x_{3}\right)}{f\left(x_{1}\right)} & \ldots & -\frac{f\left(x_{n-1}\right)}{f\left(x_{1}\right)} & -\frac{f\left(x_{n}\right)}{f\left(x_{1}\right)} \\
\frac{f\left(x_{2}\right)}{f\left(x_{n}\right)} & 1 & 0 & \ldots & 0 & 0 \\
\cdot & 0 & 1 & \ldots & 0 & 0 \\
\cdot & \cdot & 0 & \ldots & \cdot & \cdot \\
\frac{f\left(x_{n-1}\right)}{f\left(x_{n}\right)} & 0 & \cdot & & \cdot & \cdot \\
1 & 0 & 0 & \ldots & 1 & 0 \\
\cdot & 0 & 0 & 1
\end{array}\right]
$$

to obtain

$$
\mathrm{P}^{-1}\left((\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{~L}]_{\mathrm{f}}\right) \mathrm{P}=\operatorname{diag}\left(f\left(x_{1}\right)^{2}+f\left(x_{2}\right)^{2}+\ldots+f\left(x_{n}\right)^{2}, 0,0, \ldots, 0\right) .
$$

Definition [4] Let M_{n} denote the class of complex $\mathrm{n} \times \mathrm{n}$ matrices. The maximum column sum matrix norm on M_{n} is defined by

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

and the maximum row sum matrix norm on M_{n} is defined by

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

The ℓ_{1} norm on M_{n} is defined by

$$
\left|A \|_{1}=\sum_{i, j=1}^{n}\right| a_{i j} \mid
$$

and the Euclidean norm or ℓ_{2} norm on M_{n} is defined by

$$
\|A\|_{2}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2} .
$$

Theorem 2.4

(i) $\left\|(\mathrm{G})_{\mathrm{f}} \circ[L]_{f}\right\|_{1}=\left\|(\mathrm{G})_{\mathrm{f}} \circ[\mathrm{L}]\right\|_{\infty}=\left|f\left(x_{n}\right)\right|\left(\left|f\left(x_{1}\right)\right|+\left|f\left(x_{2}\right)\right|+\ldots+\left|f\left(x_{n}\right)\right|\right)$
if $|f|$ is increasing.
(ii) $\left\|(G)_{f} \circ[L]_{f}\right\|_{1}=\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right)^{2}$.
(iii) $\left\|(G)_{f} \circ[L]_{f}\right\|_{2}=\operatorname{tr}\left((\mathrm{G})_{\mathrm{f}} \mathrm{o}[\mathrm{L}]_{f}\right)$.

Theorem 2.4 follows easily from the definition of the norms.

Remark. The results of this paper can be generalized as follows. Let (P, \leq) be a lattice. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a subset of P, and let f be a real-valued function on P. Then the $n \times n$ matrix $(G)_{f}=\left(f\left(x_{i} \wedge x_{j}\right)\right)$ is called the meet matrix on S associated with f and the $\mathrm{n} \times \mathrm{n}$ matrix $[\mathrm{L}]_{\mathrm{f}}=\left(\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \vee \mathrm{x}_{\mathrm{j}}\right)\right)$ is called the join matrix on S associated with f. If $(\mathrm{P}, \leq)=\left(\mathbf{Z}^{+}, \mid\right)$, then meet and join matrices, respectively, become GCD and LCM matrices, and if $(\mathrm{P}, \leq)=\left(\mathbf{Z}^{+}, \|\right)$, then meet and join matrices, respectively, become GCUD and LCUM matrices. See [3, 5].
We say that f is a semi-multiplicative function if $f(x) f(y)=f(x \wedge y) f(x \vee y)$ for all $x, y \in P$. See [5]. If f is a semi-multiplicative function, then the Haramard product of the meet matrix $(G)_{f}$ and the join matrix $[L]_{f}$ is given as $(G)_{f} o[L]_{f}=($ $\left.f\left(x_{i} \wedge x_{j}\right) f\left(x_{i} \vee x_{j}\right)\right)=\left(f\left(x_{i}\right) f\left(x_{j}\right)\right)$. Thus our results hold for the Haramard product of meet and join matrices.

Acknowledgement. The authors are grateful to Ismo Korkee for his valuable suggestions.

References

[1] S. J. Beslin, Reciprocal GCD matrices and LCM matrices. Fibonacci Quart. 29 (1991), no. 3, 271-274.
[2] P. Haukkanen and J. Sillanpää, Some analogues of Smith's determinant, Linear and Multilinear Algebra 41 (1996), 233-244
[3] P. Haukkanen, J. Wang and J. Sillanpää, On Smith's determinant. Linear Algebra Appl. 258 (1997), 251-269.
[4] R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge University Press, New York 1985.
[5] I. Korkee and P. Haukkanen, On meet and join matrices associated with incidence functions. Linear Algebra Appl. 372C (2003), 127-153.
[6] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Marcel Dekker, New York, 1989.
[7] H. J. S. Smith, On the value of a certain arithmetical determinant. Proc. London Math. Soc. 7 (1875/76), 208-212.
[8] N. Tuglu and D. Tasci, On the LCM-reciprocal GCD matrices. Far East J. Math. Sci. (FJMS) 6 (2002), no. 1, 89-94.

