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Abstract  

Let S = {x1, x2,…,xn } be an ordered set of distinct  positive  integers  with  

x1<x2< … <xn  (n>1).  We provide some properties for the n×n matrix (G)f o [L]f  on 

S, where (G)f  denotes the  n×n  GCD matrix on S associated with f, [L]f  denotes the 

n×n LCM matrix on  S  associated with f and  o  denotes the Hadamard  product.  
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1. Introduction 

 

Let  S = { x1, x2,…,xn }  be an ordered set of distinct positive integers with  

x1< x2 <…< xn  (n>1)  and  let  f  be an arithmetical function.  The n×n matrix  (G)f  is  

called the  GCD  matrix on  S  associated with  f, where  the  i,j -entry  is  f  evaluated  

at  the  greatest   common    divisor  of  xi   and  xj ,  that  is, the  i,j -entry  of  (G)f   is  

f( )x,x( ji ).  The n×n matrix  [L]f  is  called  the LCM matrix   on   S   associated   

with  f,  where  the  i,j -entry  is  f  evaluated  at the  least common multiple of  xi  and  

xj ,  that  is,  the  i,j -entry  of  [L]f   is  f([xi,xj]) .   

H. J. S. Smith [7]  calculated the determinant of the GCD and LCM matrices 

under certain conditions. Since Smith a large number of results on GCD and LCM 
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matrices have been presented in the literature. For general accounts see e.g. [2], [3] 

and [5].  

Beslin [1] studies the determinant of the LCM matrix and the reciprocal GCD 

matrix on  S, that is, the determinant of the matrices, whose  i,j -entries are  [xi, xj]  

and  1/(xi, xj), respectively.  Tuglu and Tasci [8]  study the determinant, the trace and 

the inverse of the Hadamard product of the LCM matrix and the reciprocal GCD 

matrix on  S.   

In this paper we study basic properties of the Hadamard product (G)f  o [L]f of 

the GCD  and  LCM matrix  on  S  associated with a semi-multiplicative function  f.  

We show that  det((G)f  o [L]f )=0, determine the eigenvalues and eigenvectors of  (G)f  

o [L]f and evaluate certain norms of (G)f  o [L]f . 

 

2. Results 

 

Let  f  be a real-valued arithmetical function. Then  f  is said to be semi-

multiplicative if  f(r)f(s)=f((r, s))f([r, s]) for all positive integers  r  and  s. Semi-

multiplicative functions  f  with f(1) ≠ 0 are quasi-multiplicative functions, and quasi-

multiplicative functions  f  with f(1)=1 are the usual multiplicative functions. 

Multiplicative functions  f  with  f(pe)=f(p)e  for all prime powers  pe  are completely 

multiplicative functions. See [3, 6]. 

Throughout this section let S = { x1, x2,…,xn } be an ordered set of distinct 

positive integers with x1< x2 <…< xn (n>1)  and let  f  be a semi-multiplicative 

function.  

The Hadamard product of the  n×n  matrix  (G)f   and   the  n×n  matrix   [L]f  

on  S  is defined  as   (G)f  o [ L]f  =  ( f((xi, xj ))f([xi, xj]) ). Since  f  is  a semi-

multiplicative function, we have  

                        (G)f  o [ L]f  =  ( f(xi)f(xj) ).                         (2.1) 

Note that the n×n matrix (G )f  o [L]f  on S is symmetric.  

 

Theorem 2.1.  det( (G)f  o [L]f ) =  0 . 

 

 Proof.     From (2.1) we obtain   
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det((G)f o [L]f)) = f(x1) f(x2)…f( xn ) det

f (x1) f (x1) . . . f (x1)

f (x2 ) f (x2 ) . . . f (x2 )

. . . .

. . . .

. . . .

f (xn ) f (xn ) . . . f (xn )

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

.  

Thus det( (G)f  o [L]f ) =  0.  This completes the proof.  

 

 Corollary. The n×n  matrix  (G)f  o [L]f   on  S  is always  singular. 

 

 Theorem 2.2. Let  f  be a semi-multiplicative function with f(r) ≠ 0 for all r.  

The  eigenvalues of the n×n matrix (G)f  o [L]f   on S   are   

1λ  = tr ( (G)f  o [L]f ) , n,...,3,2λ  = det ( (G)f  o [L]f )=0. 

 

 Proof.  Let  λ i  , i=1, 2,…, n,  denote the eigenvalues of the n×n matrix (G)f  

o [L]f. Let  alg( λ i )  denote the algebraic multiplicity of  λ i , that is,  alg( λ i ) is the 

multiplicity of  λ i   as a zero of the characteristic  polynomial of (G)fo[L]f, and let 

geom( λ i ) denote the geometric multiplicity of  λ i , that is,  geom( λ i ) is the 

dimension of the eigenspace of  (G)f o [L]f  corresponding to the eigenvalue  λ i  (see 

[4]). Since the matrix (G)f o [L]f is symmetric, it is diagonalizable. Thus  alg( λ i )= 

geom( λ i )  for i=1, 2,…, n. Since the matrix (G)f o [L]f is singular, λ i =0 for some  

i=1, 2,…, n, say λ n =0. Then  alg( λ n ) = geom( λ n ) = geom(0) = n-

rank((G)fo[L]f)=n-1. This means that the multiplicity of  λ n   as a zero of the 

characteristic  polynomial is equal to  n-1. We thus may denote 

λ 2 = λ 3 =…= λ n =0. Since the sum of eigenvalues is equal to  tr((G)f  o [L]f), we 

have  λ 1= tr((G)f  o [L]f). This completes the proof.  

 

 

Theorem 2.3.  Let  f  be  a  semi-multiplicative function with f(r) ≠ 0 for all r. 

Then eigenvectors  corresponding to the eigenvalues  of  the   n×n   matrix   (G)f o[L]f  

on   S  are 
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y1 =

f (x1)

f (xn )
.

.

.
f (xn−1 )

f (xn )
1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

, y2 =

−
f (x2)

f (x1)
1
0

.
.

.

0

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

, y3 =

−
f (x3)

f (x1)
0

1

0
.

.
0

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

, y4 =

−
f (x4 )

f (x1)
0

0

1
0

.
0

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

, ...,yn =

−
f (xn )

f (x1)
0

0

.

.

.
1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

.  

 

Proof.  If  iλ   is an eigenvalue of  the  n×n  matrix   (G)f o [L]f , the  

correspondings  eigenvectors  Yi    are  the  solutions  of   

 [ ]( ) 0)( =− iffi YLoGIλ .                            (2.2)  

We  first  calculate   the  eigenvector   corresponding  to      1λ  =  

tr ((G)f  o  [L]f ) . From  (2.2) , 

( f (x1 )
2

+ f ( x2 )
2

+ ... + f (xn )
2
) I − (G) f o L[ ]f( )Y1 = 0 .                (2.3) 

If we denote unknown vectors  Y1  by  [y1, y2,…, yn]
T,  then (2.3) becomes  
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f (x2 )2 + ... + f (xn )2 − f (x1) f (x2 ) ... − f (x1 ) f (xn )

− f (x2 ) f (x1) f (x1 )2 + f (x3 )2 + ... + f (xn )2 ... − f (x2 ) f (xn )
.

.

.

.

.

.

.

.

.

.

.

.

− f (xn ) f (x1) − f (xn ) f (x2) ... f (x1 )
2

+ f (x2 )
2

+ ... + f (xn−1)
2

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

y1

y2

.

.

.

yn

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

=

0

0

.

.

.

0

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 By using  elementary  row  operations, the  coefficient matrix  of  this   homogeneous  

system  becomes  

1
− f (x1) f (x2 )

f (x2 )
2

+ ... + f (xn )
2 .. .

− f (x1 ) f (xp )

f (x2 )
2

+ ... + f (xn)
2 .. .

− f (x1) f (xn−1 )

f (x2)
2

+ ... + f (xn)
2

− f (x1) f (xn )

f (x2 )
2

+ ... + f (xn )
2

0 1 ...
− f (x2 ) f (xp )

f (x3 )
2

+ ... + f (xn )
2 .. .

− f (x2 ) f (xn−1)

f (x3 )
2

+ ... + f (xn)
2

− f (x2 ) f (xn )

f (x3 )
2

+ ... + f (xn )
2

. . .. . . .. . . .

0 0 ... 1 .. .
− f (x p) f (xn−1 )

f (xp+1 )
2

+ ... + f (xn )
2

− f (x p) f (xn )

f (xp +1)
2

+ ... + f (xn )
2

. . .. . . .. . . .

0 0 ... 0 .. . 1 −
f (xn−1 )

f (xn )

0 0 ... 0 .. . 1 −
f (xn−1 )

f (xn )
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Since  the  rank  of  the  coefficient  matrix  of  this  homogeneous  system  is  equal  

to  n-1 , there  exist  infinitely many solutions  dependent on one  parameter. The 

solution  to  this  set  of  equations  is       

y1 =
f (x1 )

f (xn)
t , y2 =

f (x2)

f (xn)
t , ...,yn−1 =

f (xn −1)

f (xn )
t ,yn = t ,  

where  t  is arbitrary.  In  this  case,  linearly   independent   eigenvector  

corresponding   to   1λ  =  tr ( (G)f o [L]f ) is  equal  to 

f (x1)

f (xn )
,

f (x2 )

f (xn)
, ...,

f (xn−1)

f (xn )
,1

 

 
 
 

 

 
 
 

T

. 

Now  we  calculate  the  eigenvectors  corresponding  to  0n,...,3,2 =λ . From  

(2.2), 

− f (x1 ) 2 − f (x1) f (x2 ) . .. − f (x1) f (xn−1 ) − f (x1 ) f (xn )

− f (x2 ) f (x1 ) − f (x2 )2 . .. − f (x2 ) f (xn−1) − f (x2 ) f (xn )

. . . .. . .

. . . .. . .

. . . .. . .

− f (xn ) f (x1 ) − f (xn ) f (x2 ) . .. − f (xn ) f (xn−1) − f (xn )2

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

y1

y2

.

.

.

yn

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

=

0

0

.

.

.
0

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

. 

 

By using  elementary  row  operations, the  coefficient matrix  of  this  homogeneous  

system becomes    

− f (x1 )
2

− f (x1) f (x2 ) ... − f (x1) f (xn−1 ) − f (x1) f (xn )

0 0 ... 0 0

0 0 ... 0 0

. . ... . .

.

.

.

.
...

.

.

.

.
0 0 ... 0 0

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

. 

Since the rank of the coefficient matrix of this homogeneous system is equal to 1, 

there exist infinitely many solutions dependent on  n-1  parameters. The solution  to 

this  set  of  equations  is   

y1 = −
f (x2 )

f (x1 )
t2 −

f (x3)

f (x1 )
t3 − ... −

f (xn )

f (x1)
tn , y2 = t2 ,y3 = t3 ,..., yn = tn ,  

where t2, t3,…, tn  are arbitrary.  In this case,  linearly independent eigenvectors  

corresponding   to   n,...,3,2λ  = 0 are 
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−
f (x2 )

f (x1 )
1

0
.

.

.
0

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

,

−
f (x3 )

f (x1)
0

1

0
.

.

0

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

−
f (x4 )

f (x1)
0

0

1
0

.

0

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

, ...,

−
f (xn )

f (x1 )
0

0

.

.

.

1

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

. 

This completes the proof.  

 

Remark Since the matrix (G)f o [L]f is symmetric, it is diagonalizable. In view of 

Theorems 2.2 and 2.3 we write 

P = 

f (x1)

f (xn )
−

f (x2 )

f (x1)
−

f (x3)

f (x1)
... −

f (xn−1)

f (x1)
−

f (xn )

f (x1)
f (x2 )

f (xn )
1 0 ... 0 0

. 0 1 ... 0 0

.
.

.

0

.
...

.

.

.

.
f (xn−1 )

f (xn )
0 0 ... 1 0

1 0 0 ... 0 1

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

to obtain  

P-1 ((G)f o [L]f ) P = diag( f (x1 )
2

+ f (x2 )
2

+ ... + f (xn )
2

, 0, 0,…, 0).  

 

 

Definition  [4] Let  Mn  denote the class of complex n×n matrices. The  

maximum column sum  matrix  norm on  Mn  is defined by   

∑
=

≤≤
=

n

i

ij
nj

aA
1

11
||max  

and the maximum row sum  matrix  norm on  Mn  is defined by   

∑
=

≤≤∞
=

n

j

ij
ni

aA
1

1
||max . 

The  1�  norm  on  Mn  is defined by 

A 1 = | aij |
i, j=1

n

∑  

and the Euclidean norm or  2�  norm on  Mn   is defined by 
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A 2 = | aij |
2

i, j =1

n

∑
 

 
 
 

 

 
 
 

1/ 2

.  

 

 Theorem 2.4  

 (i) ( )|)(|...|)(||)(||)(| [L](G)][(G) 21f
1

f nnf xfxfxfxfL +++==
∞

��   

if  | f |  is increasing. 

(ii)  ( )2

211
)(...)()(][)( nff xfxfxfLG +++=�  . 

(iii) [ ]( )fff trLG Lo(G)  ][)( f2
=�  . 

 

 Theorem 2.4  follows easily from the definition of the norms.  

 

Remark. The results of this paper can be generalized as follows. Let (P, ≤) be a 

lattice. Let  S = { x1, x2,…,xn }  be a subset of P, and let  f  be a real-valued function 

on  P. Then the n×n matrix  (G)f=(f(xi∧xj))  is called the meet matrix on  S  associated 

with  f  and the n×n matrix  [L]f=(f(xi∨xj))  is called the join matrix on  S  associated 

with  f. If  (P, ≤)=(Z+, |), then meet and join matrices, respectively, become GCD and 

LCM matrices, and if (P, ≤)=(Z+, ||), then meet and join matrices, respectively, 

become GCUD and LCUM matrices. See [3, 5].  

We say that  f  is a semi-multiplicative function if  f(x)f(y)=f(x∧y)f(x∨y)  for all 

x,y∈P. See [5]. If  f  is a semi-multiplicative function, then the Haramard product of 

the meet matrix  (G)f  and  the join matrix  [L]f  is given  as   (G)f  o [ L]f = ( 

f(xi∧xj)f(xi∨xj) ) = ( f(xi)f(xj) ). Thus our results hold for the Haramard product of 

meet and join matrices. 
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