A PROPERTY OF AN ARITHMETIC FUNCTION

Krassimir T. Atanassov

CLBME - Bulg. Academy of Sci., P.O.Box 12, Sofia-1113, Bulgaria, e-mail: krat@bas.bg

A digital arithmetical function described in [1-3] will be defined and new its properties will be described.

Everywhere here and below we shall use the natural number n of the following form

$$n = \sum_{i=1}^{k} a_i \cdot 10^{k-i} \equiv \overline{a_1 a_2 \dots a_k} \equiv a_1 a_2 \dots a_k,$$

the latest notation is for brevity, where a_i is a natural number and $0 \le a_i \le 9$ $(1 \le i \le k)$. First, we define a function noted by φ not in the sense of Euler's totient function:

$$\varphi(n) = \begin{cases} 0, & \text{if } n = 0\\ \sum_{i=1}^{m} a_i, & \text{if } n > 0 \end{cases}$$

Let us define a sequence of functions $\varphi_0, \varphi_1, \varphi_2, ...$, where l is a natural number

$$\varphi_0(n) = n$$

$$\varphi_{l+1} = \varphi(\varphi_l(n)).$$

For every natural number n will exists natural number l so that

$$\varphi_l(n) = \varphi_{l+1}(n) \in \Delta_0 \equiv \{0, 1, 2, ..., 9\},\$$

while

$$\varphi_{l-1}(n) \not\in \Delta_0.$$

Let $\mathcal{N} = \{0, 1, 2, ...\}$ be the set of the natural numbers. For every natural number $n \geq 1$ we shall construct a set De_n , the elements of which are sequential natural numbers written from left to right in increasing order. Let a_n and b_n be the smallest and the highest elements of Δ_n , respectively. Number a_n will be defined as the smallest natural number a such that $\varphi_{n-1}(a) \notin \Delta_0$ and $\varphi_n(a) \in \Delta_0$, while number b_n will be defined by $b_n = a_{n+1} - 1$.

Obviously, when we construct sets Δ_n , they will satisfy the equality

$$\bigcup_{i=1}^{\infty} \Delta_i = \mathcal{N}.$$

We can seen directly that

$$\Delta_1 = \{10, 11, ..., 18\} = \{10, 11, ..., 18 \times 1\},$$

$$\Delta_2 = \{19, 20, ..., 198\} = \{18 \times 1 + 1, 20, ..., 18 \times 11\}.$$

Let $d_2 = 1$ and for $n \geq 3$

$$d_n = \underbrace{1 \ 1 \dots 1}_{2d_{n-1} \text{ times}}.$$

We shall prove by induction that for $n \geq 3$

$$\Delta_{n} = \{1 \underbrace{9 \ 9 \dots 9}_{2d_{n-1} \text{ times}}, 2 \underbrace{0 \ 0 \dots 0}_{2d_{n-1} \text{ times}}, \dots, 1 \underbrace{9 \ 9 \dots 9}_{2d_{n-1} \text{ times}} 8\}$$

$$= \{18 \times \underbrace{1 \ 1 \dots 1}_{2d_{n-1} \text{ times}} +1, \dots, 18 \times \underbrace{1 \ 1 \dots 1}_{2d_{n} \text{ times}} \}. \tag{*}$$

When n = 3 we obtain $d_3 = 11$ and it can be seen that:

1. if a = 199 = 198 + 1, then

$$\varphi_3(a) = \varphi_3(199) = \varphi_2(19) = \varphi_1(10) \equiv \varphi(10) = 1.$$

2. if

$$b = 1 \underbrace{9 \ 9 \dots 9}_{21 \text{ times}} 8$$

then

$$\varphi_3(b) = \varphi_2(198) = \varphi_1(18) = 9,$$

$$\varphi_4(b+1) = \varphi_4(1 \underbrace{9 \ 9 \dots 9}_{22 \ \text{times}}) = \varphi_3(199) = \varphi_3(a) = 1,$$

where a satisfies the condition from 1.

3. for every natural number $x: a \leq x \leq b: \varphi(x) \leq 198$ and $\varphi_3(x) \in \Delta_0$.

Let us assume that (*) is valid for some natural number n. Now, for the three above steps of the check we obtain as follows.

1. if

$$a = 1 \underbrace{9 \ 9 \dots 9}_{2d_n \text{ times}}$$

then

$$\varphi(a) = 18 \times d_n + 1 = 1 \underbrace{9 \ 9 \dots 9}_{2d_{n-1} \text{ times}} + 1$$

and hence

$$\varphi_{n+1}(a) = \varphi_{n+1}(1 \underbrace{9 \ 9 \dots 9}_{2d_n \text{ times}}) = \varphi_n(1 \underbrace{9 \ 9 \dots 9}_{2d_{n-1} \text{ times}}) = 1$$

by induction assumption.

2. if

$$b = 1 \underbrace{9 \ 9 \dots 9}_{2d_{n+1}-1 \text{ times}} 8,$$

then

$$\varphi(b) = 18 \times d_{n+1} = 1 \underbrace{9 \ 9 \ \dots 9}_{2d_{n-1} \text{ times}} 8 = 9.$$

by induction assumption.

3. for every natural number $x: a \leq x \leq b$:

$$\varphi(x) \le 1 \underbrace{9 \ 9 \dots 9}_{2d_{n+1}-1 \text{ times}} 8,$$

i.e.,

$$\varphi_{n+1}(x) \in \Delta_0.$$

REFERENCES:

- [1] Clarke J., A. Shannon, Some properties of the digit sum. New Zealand Mathematical Magazine, Vol 14, 1977, No. 3, 191-193.
- [2] Shannon A., A. Horadam, Generalized staggered sums. The Fibonacci Quarterly, Vol. 29 (1991), No. 1, 47-51.
- [3] Atanassov K., An arithmetical function and some of its applications. Bulletin of Number Theory and Related Topics, Vol. IX (1985), No. 1, 18-27.
- [4] Atanassov K., A. Shannon, J. Clarke, A digit sum arithmetical function. Bulletin of Number Theory and Related Topics, Vol. XI (1987), No. 1, 37-49.