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1. G E N E S IS

A b strac t L am bda Polynom ial Triangles

In the beginning we have unity, 1, and two different entities a,bx (a,b  integers /  1) 

generating a triangular algebraic “genealogical tree” in Figure 1. This pattern is called 

the Abstract Lambda Polynomial Triangle.
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a

a2 abx

a3 a2bx

a4 a3bx (abx)2

Figure 1. A bstract Lam bda Polynom ial Triangle.

Its law of formation is obvious: members in the “slanting lines” parallel to  the left 

(right) leg of the triangle, which consists of powers of a(bx) with a° =  (bx)° =  1, are 

successive powers of bx(a), each multiplied by 1, a, a2, a3, . . .  (1, bx, (bx)2, (bx)3, . . .) .

Interchanging a and b in Figure 1 produces a similar pattern called the Abstract Re

ciprocal Lambda Polynomial Triangle. Geometrically, this configuration originates from 

Figure 1 as a reflection about the imagined central vertical axis consisting of powers of 

abx, i.e. (abx)n where n =  0 ,1 ,2 ,3 ,....

When x  =  1, Figure 1 becomes [6, Figure 8].

A b strac t L am b d a Polynom ials Ln(x),£n(x).

D efinition: R ecurrence R elation

Two polynomials Ln(x),£n(x) — called, respectively, the Abstract Lambda Polynomial 

and Abstract Reciprocal Lambda Polynomial -  are defined by their recurrence relations 

thus:

bx

(bx)2

a(bx)2 (bx)3

a(bx)3 (bx)4

L n+2(x) -  (a +  bx)Ln+i(x) -  abxLn(x), L 0(x) =  0, L x(x) =  1, 

4 +2(2) =  (b +  ax)in+1(x) -  abxln(x), £0(x) =  0, Zx(x) =  1,

(1.1)

(1.2)



wherein the rules played by a and b are interchanged.

From (1.1) and (1.2), the roots of the characteristic equations

A2 — (a +  bx) A +  abx =  0,

A2 — (b +  a:r)A +  abx =  0, 
are

(1.1a)

(1.2a)

a, bx,

b, ax.
Write

(i.ib )

(1.2b)

A  =  (a — bx)2, a  =  (b -  ax)2. (1.3)

Sim plest L n(x)

Calculations applied successively in (1.1) quickly create an algebraic rhythm producing

L\(x) -  1

L-iix) =  a +  bx

Lz(x) =  a2 +  abx +  (for)2

Lt(x) =  a3 +  a2bx +  a(bx)2 +  (bx)3 (1.4)

L 5(x ) =  a4 +  a3bx +  a2(bx)2 +  a(bx)3 +  (bx)4

L 6(x) =  a5 +  a4bx +  a3(bx)2 +  a2(bx)3 +  a(bx)4 +  (bx)5

L 7(x) =  a6 +  a5bx +  a4(bx)2 +  a3(bx)3 +  a2(bx)4 +  a(bx)5 +  (bx)6.

Furthermore, notice that

Ln(x) =  E  ^ - '- '( b x y  (1.5)
r= 0

which may be demonstrated by induction with (1.1) by means of a little algebraic ma

noeuvring.

Similar expressions to those in (1.4) arise for the ln(x) in conformity with (1.2). 

Observe that the Ln(x) are pictorially represented as rows in Figure 1. Likewise for 

the £n(x).
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M u tu al R eciprocity

Mutually reciprocal relationships

Ln(x) =  xn l ln , (1.6)
\ x j

ln{x) =  xn~1Ln Q  , (1.7)

are not difficult to discover.

A b strac t Lam bda-Lucas Polynom ials Mn(x),m n(x)

Appealing as (1.6) and (1.7) are, it is not however the focus of our interest to pursue the 

mutual reciprocity relationships. Rather, our attention is centred on the new, but simple, 

Abstract Lambda-Lucas Polynomial Mn{x) -  the Lucas analogue of Ln(x) -  introduced 

and defined by the recurrence relation

Mn+2{x) =  (a +  bx)Mn+i(x) -  abxMn(x), M0(x) =  2, Mx(x) =  a +  bx. (1.8)

Diagrammatically (Figure 2), the Mn(x) are succinctly realised by means of the Binet 

form (2.4) which serves also as a definition equivalent to (1.8).

Looking now at the Abstract Lambda-Lucas Polynomial Diagram, (the two outermost 

slanting lines in Figure 2);let us, for visual and typographical convenience, temporarily 

write

c =  bx, U — abx — ac. (1.9)

2

a c

a2 U c2

a3 aU cU c3

a2U U2 c2U

a3U aU2 cU2 c3U

a2U2 U3 c2U2 c4U

Figure 2. A b stract Lam bda-Lucas Polynom ial D iagram  (the two outerm ost 

slanting lines) enclosing repetitions o f F igure 1.
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A n aly sis o f F igu re 2

Designate as “units” the powers of U : U° =  1, U1, U2, U3, . . .  which lie in every

in Figure 2, each successive vertex, a power n >  1 of U separated by two rows, is the

Generally, the elements emanating from vertex Un will be {a mUn}™=0 and {(bx)mUn} c£ =0. 

Overall, there is displayed a pleasing herring-bone or chevron pattern.

M u tu al R eciprocity

Interchanging a and b in Mn(x), we introduce mn(x), the Abstract Reciprocal Lambda- 

Lucas Polynomial. Anticipating the Binet form (2.4), we easily establish the mutual 

reciprocity

H istorical

Background concepts associated with Plato [8] and Michelangelo [9] are detailed, with 

references, in [6]. From these philosophic and artistic beginnings the mathematical content 

of our paper has been wholly abstracted. The linear representation of Mn{x) by the two 

outside enclosing slanting lines is, however, reminiscent of the diagram given in [8]. 

P u rp ose  o f th is R esearch

Our object is to investigate the basic properties of, and relationships between, L n{x) 

and Mn(x). Among these considerations will be rising and descending diagonal polyno

mials, and certain differentiation features. Aspects of these polynomials will be extended 

to the convolution polynomials L ^ \x )  and M ^ \x ).

Just as the properties of Ln(x) and Mn(x) may be seen against the background of 

more general theory in [7], so their convolution features may be viewed against the general 

theory developed in [3]. However, the specialized artistic derivation of lambda polynomials 

justifies attention to them in their own right.

second row on the central vertical axis of symmetry in Figure 1. On the central axis

apex of a  U— copy of the one succeeding it, and therefore of the original pair in Figure 1.

(1.10)
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2. P R O P E R T IE S  OF Ln(x),M n(x)

G en eratin g Functions

^2 Ln{x)tn~l =  1 — |(a  +  bx)t — afcrt2}]
71=  1

^  Mn(x)tn =  (1 — at) 1 +  (1 -  bxt) 1
n = 0

B in et Form s

=  {2 — (a +  &r)t}[l — (a +  bx)t +  abxt2] 1 
1 — abxt2

=  1 +
1 — (a +  fort) +  abxt2'

(2.1)

(2.2)

(2.2a)

Sim s on Form ulas

Ln(:r) =
a" — (&x)n

a — bx 
Mn{x) =  an +  {bx)n.

L n+1(x)Ln_i(x) -  Ll(x) =  —(abx)n 1. 

Mn+i(x)M n-i(x)  — M 2[x) =  A (abx)n~l .

C losed  Form s

(2.3)

(2.4)

(2.5)

(2.6)

[«jil
Ln(x) =  y. (—1 y(a +  bx)n~2T~ 1 (

r= 0

Mn(x) =  ]T )(- l)r  ̂ f n  ̂ ^  (a +  bx)n~2r(abx)T.

' n —1 — r'

r= 0 n — r \ r

(2.7)

(2.8)

Guaranteeing the validity of (2.7) requires induction acting on (1.1). To avoid rep

etition, our proof will be left as a special case k =  0 in the proof for the convolutions 

L ^ (x ) .

T rigonom etrical Form s

Tn(^) — 

Mn(x) =

n —1 f
] I < a +  bx — 2 Vabx cos

r = l  v 
n

1J  < a +  bx — 2 Vabx cos
r = 1

( 2 k -  1 
V 2n

(n >  2),

i r l )  ( n > 2 ) ,

(2.9)

(2.10)
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where the factors in the products relate to the zeroes of the polynomials. These formulas 

are adopted from [l,p. 118]. Equivalent expressions formed by combining pairs of bracketed 

factors appropriately are also provided in [1]. For instance, on evaluation,

Refer also to [6].

R ecip roca l Polynom ials

All the preceding results should, where relevant, be linked for £n(x) and mn(x) to the 

corresponding outcomes for Ln(x) and Mn(x), in particular, (2.1)-(2.10). Observe that 

the interchange of a and b has no effect on the right-hand sides of (2.5) and (2.6).

A N ote  on P artia l D erivatives

Where as some of our more elementary results are directly analogous to corresponding 

results in [7], in the case of derivatives it is quite another story. This is because in [7] 

there are two variables x and y, as against only one variable x here, in accordance with 

the relationships x a +  bx, y -B- —2bx.

One result of mild interest is, however, revealed, from (2.1) and (2.2a), namely,

M 4(x ) =  (a +  bx)2 — Aabx cos2

(2.11)

where the symbols L, M  denote the infinite summations in (2.1) and (2.2). 

R elation sh ip s between Ln(x) and Mn{x).

Binet forms (2.3) and (2.4) may be employed to establish the following basic connec

tions.

Ln(x)Mn(x) =  L 2n(x), (2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

Mn(x) — abxLn-i(x) =  L n+1(x), 

Mn(x) +  (a +  bx)Ln(x) =  2 Ln+1(x),

Mn(x) — (a +  bx)Ln[x) =  —2abxLn-i{x )

Mn+i(x) -  abxMn_i(x) =  A Ln(x),

2Mn+i(x) -  (a +  bx)Mn(x) =  A L n(x),

M2n{x) =  M 2(x) -  2 (abx)n, 

M2n{x) =  A Ll(x) +  2 (abx)n, 

2M2n(x) =  A L2(z) +  M 2(x),
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Em(,%')L/In(x') d“ L n{%)Mm(x) — 2L mjrn{x')) (2.21)

LLm{x) Mn{x) 4- A Lm{x')Ln{x) — 2MmjrTL{x), (2.22)

L m(x)Mn(x) -  L n(x)Mm(x) =  2(abx)nLm_n(x), (2.23)

Mm(x)Mn(x) -  A Lm(x)Ln(x) =  2(abx)nMm- n(x). (2.24)

While (2.12)-(2.22) are anlogues of [7, (2.8)-(2.18)], the final two formulas have their 

counterparts in [5]. En passant, it may be recorded that (2.14) follows as a direct conse

quence of (2.1) and (2.2).

3. R IS IN G  A N D  D E S C E N D IN G  A B S T R A C T  L A M B D A  P O L Y N O M IA L S  

A . P olynom ials L n{x)

(i) R ising

Construct, in the usual way (see [7,p.218] for references), the Rising Abstract 

Lambda Polynomials Rn(x) of Ln(x). Reading from (1.4), we have Ri(x) =  

1, Riix) =  a, P 3(:r) =  a2 +  bx, R4(x) =  a3 +  abx, R5(x) — a4 +  a2bx +  

(bx)2, Rq(x) =  a5 +  a3bx +  a(bx)2,

It is an immediate consequence that

Rn(x) =  aRn-\(x) (n even)

Rn(x) =  aRn-i(x) +  ( b x ) ^  (n odd)

whence Rn(x) =  a2Rn-2{x) +  a5(bx)n̂  

where 6 =  <
1 n even, 

0 n odd.

(3.1)

(3.2)

(3.3)

Evidently,
[V ]

R^(x) =  Y , a”~1“ 2,'( M r. (3.4)
r —0

Analyzing the expressions for Rn(x) and the form (2.7) for L n{x), we assert 

that

n odd: Rn(x) — (—l)r (a2 +  bx)JLi1~2r(a2bx)r
(  »-

r= 0

2

r

\

/
(3.5)

Generating function (n odd) is
OO

R =  ^2 R2n-i(x)tn~l =  1 — |(a2 + bx)t — a2&:rt2j j  , (3.6)
n= 1
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whence

x(l -  2 aH )-^  -  t(l -  aH)— =  0. (3.7)

(ii) D escending

Reverting to (1.4) and to the standard generation and notation Dn(x) for the 

polynomials Ln(x), we determine that

D n(x) =  — bx)~l

whence

""d a  =  “  bx)~2 =  an_16Di(x),

and

/ \ — CL.
£>n(z)

Write, for the generating function,

D =  y  Dn{x)tn 1 =  (1 — bxt) 1

so that
dD dD 

X dx * dt '

B . Polynom ials Mn(x)

(3.8)

(3.9)

(3.10)

(3.11)

(i) R isin g

Designate the rising diagonal polynomials for Mn(x) by Sn(x), i.e., the Rising 

Abstract Lambda-Lucas Polynomials. Then, from (2.4), the first few terms 

are S0(x) =  2, Si(x) =  a, S2(x) =  a2 +  bx, S3(x) =  a3 +  (bx)2, S^rr) =  

a4 +  (&r)3, • • •• One doesn’t have to be psychic to deduce that

Sn(x) =  an +  (bx)n'_1 (n >  1). (3.12)

Moreover,

OO

y )  Sn(x)tn~l =  a (l — at)~l +  bxt(l — bxt)~l ( n >  1)
7 1 = 1

a +  (1 — a)bxt — abxt2 
1 — (a +  bx)t +  abxt2
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(ii) D escending

Represent by E n(x) the Abstract Descending Lambda-Lucas Polynomials of 

Mn(x). Then the first few expressions are E 0(x) =  2 4- bx, E i(x ) =  a +  

(ibx)2, E^(x) =  a2 +  (bx)3, E 3(x) =  a3 +  (&e)4, • • •. By inspection,

E n(x) =  an +  (bx)n+1 ( n >  1). (3-14)

Consequently (cf. (2.4)),

OO

^  E n(x)tn~1 =  a (l -  at)-1 +  (6x)2(l — bxt)~1. (3.15)
7 1 = 1

Com m ents: Attempts to reveal summation formulas for Sn(x) and E n(x) 

analogous to those for Rn(x), n odd, in (3.5) have not met with success. Per

haps it would not be too unreasonable to resolve the impasse by reconciling 

ourselves to claim

(i) Sn(x) =  (R.H.S. of(2.4)) +  (bx)"“ 1 -  (bx)n, (3.16)

(ii) E n(x) =  (R.H.S. of(2.4)) +  (bx)n+1 -  (bx)n. (3.17)

4. F IR S T  C O N V O LU T IO N S L ^ (x ) ,  M ^ (x )

G en eratin g  Function Definitions

The first convolution polynomials L ^ (x ) , M ^ (x )  of Ln(x) and Mn(x) respectively, 

are determined by the generating functions

71=  1 
OO

Y , ^ \ x ) e

[l — t(a  +  bx) +  afrrt2j ,

{2 — (a +  bx)t}2 1 — (a +  bx)t +  abxt2 

with L q̂ (x ) =  0, M <q \ x ) =  4.
71— 0

—2

(4.1)

(4.2)

(4.3)

A. Polynom ials L ^^x).

From (4.1), it transpires that the simplest polynomials L ^ (x )  are

L ?(x ) =  1

L <2 \ x) =  2 (a +  bx)

L ^ \x )  — 3(a -f- bx)2 — 2abx

L <a \ x) =  A(a +  bx)3 — 6abx(a +  bx) (4.4)
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L*p(x) =  5(a +  bx)4 — 12abx(a +  bx)2 +  3(abx)2

L ^ \x )  =  6 (a +  bx)5 — 20 abx (a +  bx)3 +  12 (abx)2 (a +  bx)

L ^ \x )  =  7(a +  bx)6 — 30abx(a +  bx)4 +  30(abx)2(a +  bx)2 -  4(abx)3.

Something of a pattern is apparently emerging in these data.

Taken together, (2.1) and (4.1) immediately lead to

L n{x) =  L ^ \x )  -  (o +  b x )L ^ \ (x) +  abxL^l2(x). (4.5)

Go back now to (2.1). Differentiate partially w.r.t. t and compare coefficients of 

yn_1. Then

(n -  l)L„(x) =  (a +  bx)Lnli(x) — 2abxL^l2(x). (4.6)

Eliminate Ln(x) from (4.6) and (4.7) to derive the recurrence relation (n — > n +  1) 

nLnh(x) =  (n +  l)(a  +  bx)L^\x) -  (n +  2)abxL^ll (x). (4.7)

T h eorem  1

4 ’ M  =  [E ( - l ) r ( "  “  f )  ( "  ~  r)  (a +  (4.8)

P ro o f. Our result is validated by means of induction along with the recurrence 

relation (4.7).

R em ark s:

(i) Pascal’s Formula is necessary in the reduction and simplification of the combi

natorial products.

(ii) In the proof, the following combinatorial result is required:

(N-  O ^ T ' )  +  2(JV -  =  (4.8a)

which has previously appeared in the Jacobsthal situation in [2, (2.1a)].

Partially differentiating (4.2) with respect to t leads to a useful connective

nMn(x) =  (a +  bx)L ^\x) -  AabxL^l^x) +  abx(a +  5x )L|1122(^)- (4.9)
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B  P olyn om ials M ^ \x ) .

Simplest polynomials M ^ (x )  are, from (4.2),

M i'\x )  =  4(a +  bx)

M2x\ x )  =  5 (a +  bx)2 — 8 abx

M ^ \x )  =  6(a +  bx)3 — 16abx(a +  bx) (4.10)

M ^ \x )  — 7{a -f bx)* — 26afcr(a +  bx)2 +  12(abx)2

M ^ \x )  =  8(a +  bx)5 — 38abx(a 4- bx)3 4- 36(a&r)2(a 4- bx)

M ^ \x )  =  9(a +  bx)6 — 52abx(a +  bx)* +  75(abx)2(a +  bx)2 — 16(abx)3.

Equations (4.1) and (4.2) in conjunction readily reveal that

M £]{x) =  ALnh(x) -  4 (a +  bx)L^(x) +  (a +  bx)2L {̂ \ .  (4.11)

Multiplying numerator and denominator of (2.2) by 1 — (a 4- bx)t +  abxt2, and 

simplifying using (4.1), we discover that

Mn(x) — 2L{£li(x) -  3(a 4- bx)L^\x) +  { (a  4- bx)2 +  2abx}L<̂ )_l (x)

-  (a +  bx)abxL^l2(x). (4-12)

Eliminate Mn(x) from (4.9) and (4.12) to arrive at the recurrence relation

2 nLnh (x) =  (3 n +  1) (a 4- bx)LW (x) -  {n(a 4- bx)2 +  2 (n +  2 )abx}L {̂ )_l (x)

4- (n +  l)abx(a +  bx)L^l2(x). (4-13)

Coming now to the expansion of the right-hand side of (4.2) and gathering like 

powers of t, we find, using (4.1), that

M " ( x )  =  | > i r 2 2- ' 0 ( a  +  t e r L «  (*) . (4.14)

Ultimately, we can fall back on a summation definition for M^>{x) in line with that 

for Pell-Lucas convolutions [4, (5.1)] when k — 1. Accordingly, we have

Mn \x )  =  Y s MAX)M n-j(x), Mq(x) =  2, (4.15)
3=0
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whence, for example, by (2.4) and (4.10),

M ^ \x )  =  2M0(x)M2(x) +  M l{x) =  4(a2 +  (bx)2) +  (a +  bx)2 =  5(a +  6x)2 -  8afrr, 

as already shown in (4.10).

5. G E N E R A L  C O N V O L U T IO N S Ljf>(x), M ^ (x )

G en eratin g  Function Definitions

Proceeding from the first convolution polynomials L ^ (x ) ,  M ^ (x )  to the general 

(.kth order) convolution polynomials L £ \x ) ,  M ^ \x )  of Ln(x), Mn(x) respectively, we 

postulate the following

Y2 L ^ (x ) tn 1 =  [1 -  (a +  bx)t +  a bxt2] (fc+1), (5.1)
7 1 = 1

OO

Y^ M^k\ x ) t n =  {2 — (a +  bx)t}k+1[l -  (a +  bx)t +  abxt2]~^k+l\  (5.2)
n=0

with

4 ‘ )W  =  0. M0<*)( j ) = 2 ‘ +1.

A. P olynom ials L {£ \ x )

Expanding in (5.1) reveals that

L f \ x )  =  1

L {2k)(x) =

4 fc) (*) =

L{k](x) =  

I $ \ x )  =  

L {e \ x )  =

'k +  r

, i ,
'k +  2N 
, 2 , 
'k +  3

(a +  bx)

(a +  bx)2 -  ^ abx

(5.3)

(5.4)

 ̂ j ( a  +  bx)3 — ~ ^ J ( a  +  bx)abx

^ ^  ^  (a +  foe)4 — 3 ^  ^  j  (a +  bx)2abx +  ^  ^  ^  (abx)2

^ ^  (a +  for)5 — 4 ^  ^  (a +  bx)3abx +  3 ^  ^  (a +  bx)(abx)2.

Within the definition (5.1) there is contained the immediate deduction 

L n \ x ) =  Ln +1\ x) ~  (a +  x̂ )L {n - \ \x )  +  abxL{k̂ \ x ) . (5.5)
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Next, differentiate (5.1) partially w.r.t. t and compare coefficients of yn 1. It ensues 

that

(n ~  l )L ^ \x )  =  (k +  l ) { (o  +  b x ) L ^ \ x )  -  2a b x L ^ \ x ) } .  (5.6)

Eliminate L $ ( x )  from (5.5) and (5.6). Then (n — > n +  1) we are lift with the 

recurrence relation (k — > k — 1)

nL^h (x) =  (n +  k) (a +  bx)L('k\x )  — (n +  2 k )ab xL ^ \{x ). (5.7)

Putting k =  0,1 in turn in (5.7) brings us back to (1.1) and (4.8) respectively. 

Building on the data (5.4) and mindful of (4.8), we can assert:

T heorem  2

4‘>W = E  (-i)’
r = 0

/'n +  k — 1 — r \  fn — 1
v k M r (a +  bx)n 2r 1(abx)r. (5.8)

Proof: Basically, we follow the procedures delineated in the Proof of Theorem 1, 

namely, induction with appeal to the recurrence relation (5.7).

Remarks similar to those following the Proof of Theorem 1 are now applicable here 

also. Included, in particular, are the formulas (see [2], (4.12a), (4.12b))

* { (
N + k - l - r  

k ) ( N~ r ) + 2 p - y i- r) (T - rr 1) } = w p + y r T T ) -  <5-9a)

N  +  ( » - ) ]  .  iv ( "+ ‘ - ')  ( " - ) •  (5.9b)

When k — 1, we return to (4.8a) from (4.9a).

B . Polynom ials M ^f\x).

Calculation of M ^ \x )  from (5.2) for even small values of n is no easy task. We 

have, for example,

M[k\ x )  =  2

M ? \ x )  =  2k 1(a +  bx)

'k +  r

v 1 >
k - 1/

(a +  bx)

fk -4- 2n
+

fk + r
, 2 .

-  2k+1abx ( * r

Thus, k =  2 gives us x) — 18(a+bx)2-24abx. Or, we may invoke the analogue 

of [3, (10.1)], namely,

M f W  =  E  (5.9)
3=0
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Generally (cf. [4, (10.1]),

M ik\ x )  =  Y , M j(x)M iif>(x). (5.10)
i=o

Expanding (5.2) in collaboration with (5.1) shows us that

k+l / b, _i 1 \
m p w  =  E ( - i r 2 i« - d  ;  (5.ii)

r= 0  V r  /

where the expansion is expressed as a summation.

6. L A S T  R IT E S

Further D evelopm ents. Some other avenues left open for investigation include, e.g.

(i) relationships between Ln(x) and £n(x)] and between Mn(x) and mn(x),

(ii) rising and descending diagonal polynomials for convolutions L£0(x) and M ^ (x ) ,

(iii) further properties of (a) (x), M £ \ x), (b) L ^ (x ) ,  M ^ \x ) .

Specia l C ase

When k =  0, we return, as previously noted, to our stating points, L n(x) and Mn{x).

In this sense, we are like the person in the Rubaiyat of Omar Khayyam who 

“Came out by the same door as in I went” , 

except that in the process some pleasurable experiences have been absorbed.
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