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Abstract

For x > 0, let () be the number of prime numbers not exceeding
x. One shows that, for x > 7, there exists at least one prime number
between = and = + m(x), thus obtaining a result that is sharper than
the one postulated by Bertrand.
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1. INTRODUCTION

Bertrand [1] checked in 1845 that, for every integer n with 2 < n <
3,000,000, the interval (n,2n) contains at least one prime number. Cheby-
chev [2] gave in 1852 a first proof of this fact. One mentions in [5] the authors
of other proofs, and similar results as well. Among these results, let us recall
the following:

Nagura [6] proves in 1952 that, for z > 25, there exists at least one prime
number in the interval [T %r) Rohrbach and Weis [8] show in 1964 that,
for every integer z > 118, the interval (T %a:) contains at least one prime
number. Costa Pereira [3] later gives an elementary proof for the existence
of a prime number in the interval [1 %.L) for > 485,492.

For @ > 0, denote by m(z) the number of prime numbers not exceeding
x. By making use of non-elementary tools, Rosser and Schoenfeld [9] prove

several results concerning m(x). These results have been recently improved



by P. Dusart. More precisely, he shows in [4] that for every integer  we have
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These inequalities take on in [7] a more convenient form. One shows that for

real numbers z we have
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for z > 32,999, (3)

Of course, these inequalities easily lead to proofs of the Bertrand type in-

equalities, that is,
7(kz) — w(z) > 1 for z > ng(k), (5)

the number ng(k) being determined when £ is fixed.

In what follows, we prove a result which is stronger than the results of

type (5).

2. THE MAIN RESULT

Theorem. For every real number x > 7 there exists at least one prime

number in the interval (z,x + 7(z)).

Proof. One shows in [9] that for z > 17 we have

x

hence it suffices to show that
z 0 7
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If view of (3), if z + m(z) > 32,359, that is, z > 30,000, we have
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Since for y > 0 we have log(1 + y) < v, it follows that
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Now (4) and (8) imply that

log” z — 2.92log z — 1.51
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for = > 30,000.
It then follows that for z > 30,000 we have

T

m(x 4+ m(x)) — m(z) > Togz + I

(9)
Now the checking performed for < 30,000 finishes the proof. m

Remark. One proved in [7] that for all integers z,y > 2 with 7(z) <
y < x we have

n( +y) < (@) + ().
This implies that

7((z + 7(2)) < (w) + m(r(2)). (10)
Since 7(z) ~ z/logz, it follows that 7(7(z)) ~ x/log®z hence by (9) and

(10) we get
=

r{(@ + w(2)) = 7(2) ~ —. (1)
og-w
It is fairly easy to show that for each fixed natural number n we have
G
m((z + () =z Z il ) (12)
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From (11) we get ap = 1. It would be interesting to determine the other

coefficients ay, as, .. ., a, as well.
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