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A NOTE ON SOLVING AND ANALYSING OF THE FULL CUBIC
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101 Bulgaria Str, ap 1, 4003 - Plovdiv, Bulgaria

Introduction: In the present note we use circulant matrices for solving the equation
flx)=a®+pel4+qge+7r=0, (1)

when p, ¢,r are complex numbers. But since the ring of circulant matrices is isomorphic
to the ring of tartaglions TAR [1], this means that a tartaglion approach for solving (1)
is used, too. When p, ¢,r are real numbers we analyse four different cases for the roots of
(1), which are only possible, giving a criterion for that, when each one of them holds.

1. HOW TO SOLVE THE EQUATION 23 + pa? + qv +r =0?
From the history of Matematics it is well known that the basic approach for solving

of (1) is to substitute there
)
r=1t— ]—, (2)

which yields the cubic equation of the kind 3 + Pt + Q = 0.
The last equation has a root ¢*, which is given by so called Cardano’s formula:

* 3 Q Q2 P3 3 Q Q2 P
t* = _— —_— 4 — _— — == —_—
\/2+\/4+27+ > Y

This formula was discovered first in 1515 by Scripione del Ferro (1456-1525), but
he kept it in secret. Then the formula was rediscovered in 1535 by Niccolo Tartaglia
(1500-1557). But Tartaglia also didn’t published his formula. This did in 1545 Gerolamo
Cardano (1501-1571) who learned it by Tartaglia.

Here we propose another approach for solving (1), which doesen’t use the substitution

(2), Thus approach is given below.
Let us represent (1) as

det(A — x.E*) = 0, (3)

where A is a circulant matrix
a ¢ b

A=1] b a c )
with unknown complex parameters «, b, ¢ and
0 )

1
E*=10
0

o = O
(o =)

137



In (3) the denotation det(A — x.E*) is used for the determinant of the matrix

a—x € b
A—z B* = b a—2a ¢ : (6)

c b a—

Using the fact that A — . E* is a circulant matrix too, and a well known formula for
the determinant of an arbitrary circulant matrix (see [2]), we may rewrite (3) in the form

(2 — (a+ b+ c)).(x — (a4 wb+ w?e)).(x — (¢ + Wb+ we)) = 0, (7)

where w is the basic primitive root of the binomial equation

3 =1,
12 /G
2r .. 27 1 V3
w:cos?+1,31n—3—:—§+z.7. (8)

On the other hand (after a simple computation of the left-side of (7)) we may rewrite
(7) in the form

2% — 3ax? + (3a? = 3be)x + 3abe — a® — b — & = 0. (9)

Now (7) and (9) imply that all roots of (9) (we denote them z7, 2%, %) are the following:

r1=a+b+c (10)
a3 = a4+ wb+wie (11)
ah = a+w'h+we (12)

Since by assumption (1) and (9) represent one and the same equation, the relations:
—3a=yp; 3a>—3bc=¢q; 3abc—a®-® - =r

hold. Hence:

P ;
= oty 13
a=-L (13)
2
p* — 3
b =2 ; q. (14)
2 1
4= —O—Hp‘q’ + —pq — . (15)
27 3

Let us introduce numbers D, E, F, depending on p, ¢,r, by:

D = 4.(p* — 3¢); (16)

P A |
F=_ft=_ Zpg — 17
f@)=—gptgpa—r (17)
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D

E=F—4=). 18
P 4(5) (13)
Then (14) and (15) yield:
B+l =F; (19)
D
3.3 _ 3‘ 20
b’c (36) (20)

But (19) and (20) are Viete’s formulae for the quadratic equation

A D
2 7 )3 = 0 21
y y+(35) (21)
with roots: ! !
y1263=3F+§\/E;
1 1
y = ,3 = —ff — — E
Y2=¢C 5 2\/_,
because of (18).
Hence:
./1 1
b= {f =F + VE; (22)

J1
c:“iF—5¢E (23)

Remark 1: The meaning of (/e in (22) and /e in (23) are choosen so that (14) is
satisfied.

Now (10)-(12) and (22)-(23) give us the final result.
Theorem 1: Let bis given by (22), c is given by (23) and Remark 1 hold. Then all roots

of the full cubic equation (1) are given by formulae:

/1 1 1 1
.1?1‘:a+b+c:—%)+&/;F+;\/E+</-2—F—§\/E—;

/1 ! 21 1
‘1';:(t+wb+wzc:_§+w* 3F+3\/E—+w2* iF_i\/_E;

o1 1 1 1
‘@:“+w%+wc=—§+d”§F+;¢E+wv§F—§JE

where: 7
w :cos%—{—isin%r— = —%—I—i.—\g——f—s—;
F= —%1)3 + %pq -1
B=(~ "+ by =t - 42 My

139



Remark 2: The result of Theorem 1 is an invariant under changing places of b and ¢ in
(22) and (23).
Up to now the coeficient of (1) were arbitrary complex members. But further we shall

suppose that they are real numbers.

2. ANALYSING (1) IN THE CASE OF REAL COEFICIENTS

Let us discuss the situation when the coeficients of (1) are real numbers. Of course
then (1) has always at least one root, which is a real number. Therefore for the roots of
(1) we have only four possible cases. They are described below:

(ay) The roots of (1) are different real numbers;

(a) Only one root of (1) is a real number ( the others two are conjugate complex
numbers);

(az) All roots of (1) are real numbers, but exactly two of them coincide;

(ag) All roots of (1) are real numbers and they all coincide.

When (a3) holds, (1) has a double root, which is a real number.

When (a4) holds, (1) has a triple root, which is a real number.

The following four theorems (we call them E-criterion) show us when each one these
cases holds.

(aq) holds if and only if (iff) £ < 0.
Theorem 3. («;y) holds iff £ > 0.
Theorem 4. (a3) holds iff £ =0 and D # 0.
(a4q) holds iff £ =0 and D = 0.

Further, as usual, we denote by R the real number field.

Theorem 2.

Theorem 5.

The assertion of Theorem 5 follows immediately from the next

_ _ P’ P
Lemma (1) has a triple root if ¢ = 5 and r = 5.
Proof of the Lemma: (1) has a triple root o € R iff for all € R

(x—a)=flx)=2®+p2® +qz+r.

Hence:

and the Lemma is proved.
Proof of Theorem 4: First we observe that: («3) holds iff (1) has a double root and
(1) has’t a triple root. But: (1) has a double (or a triple) root iff

. df (x
R (fe), L) =, (24)
da
Tox df () 3 2
where R*(f(x), 717_) denotes the resultant of f(x) = a° + px® + ¢ + r and
If (x
(il(:cl ) = 32% 4 2pz + q. (25)
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Using the well known Sylvester’s formula for R*(f(x), %) (see [3]):
If (x
R*(f(x), ‘f[( ) _ detB, (26)
dx
where B is the matrix
I p g r 0
01 p q r )
B=|3 2 ¢ 0 0 (27)
0 3 2p ¢q 0
0 0 2p q
we obtain after a computation
R f(x df () . L L 22, 4.3, 0972 __ o~ 3
(f(x), ; ) = —18pgr + 4p°r — p°q* + 4¢° + 271" = 21.E (28)
dx

Therefore (24) and (28) imply:

(1) has a double or a triple root iff & = 0.

The Theorem 4 is proved, since if we assume that E' =0 and D = 0 then Theorem 5
implies: (1) has a triple root,which is not true.

Further we need the relation
E = f(ml)'f('TZ)a (29)

where 7 and x5 are roots of

df ()

dx

=3x2* 4+ 2pr +¢=0. (30)

One may check (29) directly.
Proof of Theorem 3: Let £ > 0. We must prove that then (a;) holds. For this aim we
shall consider the following three cases (which are only possible):

(by) v1 € R and a3 € R;

(by) ¥1 € R ,u2 € R and 1 # @3;

(b3) v1 € R ,x2 € R and 1 = 3.

Let (by) hold. Then D < 0. Hence, for all x € R

df (=)

dx

> 0. (31)

As we noted before, there exists y; € R such that

f(3) =0 (32)

Let us assume that there exists v, € R, such that v, # 41 and
f(72) =0, (33)
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Let 72 > 9;. Then according to Rolle’s theorem, there exists 5 € R, such that
N € (72,71) and 9 is a root of (30). But this contradict to (31).

Therefore (by) implies (as).

Let (b;) hold and let ¥y < 2. Then D > 0 and from E > 0 and (29) we conclude that
only the following two cases are possible:

(c1) f(x1) > 0 and f(x3) > 0;

(c2) f(x1) <0 and f(x;) < 0.

For both cases we consider the intervals:

I = (—o0,21); I = (v1,22); I3 = (22, +00).
It is easy to see that:

df ()

dx

df ()

dz

(Va € I U I3)(

> 0), (Vo € L)(

<0). (33)

Let (c;) hold and let 4; € R be a root of (1) (as we noted before, such root always
exists). Then v ¢ I3, since f(x) is an increasing function on I3 and f(x3) > 0. Also
11 & Iy, since f(x) is a decreasing function on I and: f(x1) > 0, f(xz) > 0. Obviously
1 # x1 and 71 # w2, because of f(x1) > 0 and f(x3) > 0. Therefore y; € .

Let us assume that there exists 7, € R, such that vy, # 41 and 7; is a root of (1).

Then 7, € I, too. Hence, according to Rolle’s theorem, there exists a real root of i{l(q—q),
which lies between 4; and 7,. Therefore this root lies in I;. But the last conclusion to
(337). Therefore (¢;) implies (a3).

Let (cz) hold. Using the same considerations as in the case (¢;), we conclude that (1)
has exactly one root 7 € R and moreover v € I3. The other roots of (1) are conjugate
comlpex numbers. Therefore (¢;) implies (a;), too. Hence, (b;) implies (as).

Let (b3) hold. Then D = 0. Hence for all z € R

If (x
Y -
dx
Hence:
f(x) is a nondecreasing function on R. (35)

Let us assume that there exists 71,72 € R, such that 73 < v, and the equalities (32)
and (33) hold. Then (35) implies
fa)=10, (36)

for all x € [y1,72]. But (36) is impossible, since f(x) is a polynomial. Therefore there
exists an unique 4 € R, which is a root of (1).

Thus we proved that (b3) implies (a3) too.

Now, let (az) hold. Then we shall prove that £ > 0 (the case £ = 0 means that (1)
has a double (or a triple) root, but this contradicts to (a;)).

Let us assume that £ < 0. Then (18) yields D > 0. Hence, dl;(ll)
roots: z; € R, x, € R. h

has two different
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Let 7 < 3. Therefore f(x) is an increasing function on I; and on I3 too, but is
decreasing function on I. Using (29) and the assumption that £ < 0 we conclude that
one and only one of the possibilities:

(dy) f(x1) > 0 and f(x3) < 0;

(d2) f(x1) <0 and f(x3) > 0; holds.

Let (dy) hold. We have that f(x) is a continuous function on R, i.e. on I; and on I3
too. Also f(x) changes its sign on I; and I3 too, since:

Ili‘mt flz) = —o0; lim f(2)rmteo = +00.

Therefore (1) has at least two different roots: oy € I;;ay € I3 (the case a3 = ay is
impossible, since I; N I3 = () ). But the last contradicts to ().

Let (d;) hold. Then for all x € (ay,3)

df ()

dx

< 0.

Hence:
f(x) is a decreasing function on I5. (37)

But we have f(x1) < 0. Then there exists ;17/1 € I, such that
f(ah) <0, (38)

since the function f(x) is continous on R.
Also we have f(x3) > 0, Then there exists @}, € I, such that

;1?.'2 > ;1"1 (39)

and

flay) >0 (40)
since the function f(x) is continous on R.
From (38) and (40) we obtain

flxg) > flay). (41)

But (39) and (41) contradict to (37). Therefore our assumption, that £ < 0 is wrong.

Thus we proved that (a;) implies £ > 0.

The Theorem 3 is proved.
Proof of the Theorem 2: Let (a;) hold.

If we assume that E > 0, then Theorem 3 implies (a;). But the last contradicts to
(a).

If we assume that ' = 0, then (a3) or (a4) hold, according to Theorem 4, or Theorem
5. But each one of the cases: (a3), (a4), contradicts to (a;). Hence: E < 0.

Now, let £ < 0. We must prove that (a;) holds.
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But according to Theorems 3, 4 and 5, each one of the cases: (a3)-(ay4), is impossible.
Then only the case (a;) remains to be valid. The Theorem 2 is proved.

As a corollary of Theorem 5 we obtain the following
F-criterion: If (a4) holds, then F' = 0.

Another corollary (from (18) and Theorem 3) is the following
D-criterion: If D < 0, then (a3) holds.

Thus our investigation is completly finished.
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