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1. Introduction

1. Used notations: R" — the standard n-dimensional vector space; O — the zero
vector in R™; 4 - vector addition in R™; R’} — the set of all vectors in R"™ with nonnegative
components; P — the set of all vectors in R, such that their components are between the
numbers: 0,1,....,k —1 (k > 2 is a fixed integer); * > y — relation showing that vectors
= (11,%2,...,7,) € R} and y = (y1,¥2,...,¥n) € R} satisfy the condition x; > y; for each
1 =1,2,...,n; @ - the so-called exclusive disjunction; C - the complex numbers field; x - the
Cartesian product of sets; C" = R xR x ... x R.

Ntimes

Let Ey, E,, ..., E, be metric spaces with corresponding metrics: dy,ds,...,d,. Let us
denote by F the cartesian product of sets Ej,...,E,. Of course, v € FE if and only if
(shortly: iff) @ = (2q, @2, ...,2,), where x; € E;, (1 = 1,2, ...,n).

Let ¢ : R} — [0,400) be arbitrary function having the following three properties:

A

p(e)=0 iff 2 = O, (1)
for all x,y € R} : e(zty) < o(x) + o(y), (2)
p(@) 2 oly), if @ > y. 3)

2. Main Theorem

Theorem 1: Let *: E x E — R} be an operation introduced by

xxy = (di(x1,y1),da(x2,¥2), ooy du(T 0y Yn)), (4)

for all @ = (vy, 22, ..., ¢0), ¥ = (Y1,Y25 .-, yn) € E. Then the function d : £ x £ — [0, 400)
1s defined by
d(x,y) = (v *y) (5)

1s a metric on £.
Proof: First, we shall show that for all @,y € E: d(x,y) > 0. Indeed, let xz,y € E be
arbitrary. Then a *y > O.

Hence, (1), (3), and (5) imply d(x,y) > 0.

Second, we shall show that d(x,y) =0 iff v = y.

Let #,y € F and « = y. Then x; = y; and (4) yields « *+y = O, since d; is a metric on
E,(:=1,2,...,n). Hence, d(x,y) = 0, because of (1) and (5).



A

Let for some v,y € E we have d(x,y) = 0. Then x *y = O, since (1) holds. Hence for
each 1 =1,2,...,n: d;(x;,y;) = 0. Hence x; = y;, since d; is a metric on F;. Hence v = y.

The property

d(x,y) =d(y,x)

follows for every x,y € E from the equalities d;(x;,y;) = di(y;,x;) for ¢« = 1,2,...,n, which
are true since d; is a metric on F;.

To prove that d is a metric on F it remains only to prove that for every @ = (1, %2, ..., ,),
Y= (Y1,Y2s--»Yn)s = = (21, 22, ..., 2n) € E it is fulfilled

d(x,y)+d(x,z) 2 d(y, z). (6)
Starting with the inequality
di(zi, y:) + di(2i, z:) 2 di(yi, i),
that is true, since d; is a metricon E; 1 = 1,2, ...,n, we obtain

(di(x1,y1) + di(x1, 21), (da(T2, y2) + da(T2, 22), ooy (@0, Yn) + dn(@n, 20))

-1
~

= (dy(y1,21), d2(y2, 22) 5 ooy dn(Yny 20)- (
Then (3) and (7) imply
o((xy)Ha =) = ply * 2).
Hence
el xy)+e(rxz) 2@y *xz), (8)

because of (2).
Now, (8) proves (6), since we have (5). The Theorem is proved.
Below we give some applications of the above Theorem.

3. Metrics on P}

Let
W, ={0,1,....k =1},

where k > 2 is a fixed integer.
We introduce the function p: C x C — [0, +00) by

pln,v) = Ju = o], (9)
If we consider p as a function p : Wy x Wi, — [0, 4+00), then p is a metric on Wj. Putting
BEi=E=.=E,=W (10)

and

=dg=,.=d,=p (11)
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we have

Eyx E; x .. x E, =P¢
and
x*xy = (|Jvg — w1, |22 — yals ooy |20 — Yal)

for all @ = (21,22, .., Tn), ¥ = (Y1, Y2, -, Yn) € PR, because of (4), (10), and (11).

As a corollary of Theorem 1 and (12) we obtain the following
Theorem 2: Let ¢ : R} — [0,+00) be arbitrary function having the properties (1) - (3).
Ifd: P x P} — [0,400) is the function given by

d(x,y) = o(|v1 =l |2 — yaly oos |Tn — Ynl) (13)

for all @ = (w1, @2,y ¥0), ¥ = (Y1,Y2, ..., ¥n) € Py, then d is a metric on Pf.
Corollary Function d : P} x Py — [0,4+00) introduced by

d(x,y) = o(x1 B y1, T2 D Y2y o0y Ty, B Yn) (14)

is a metric on Py.
Proof: The assertion follows from the equality

lu —v|=ud v,

that is true for all u,v € PJ.

4. Metrics on R"™ and C"

The following assertion shows how a lot of the possible metrics on R™ and C™ look like.
Theorem 3: Let ¢ : R} — [0,4+00) be arbitrary function having the properties (1) - (3).
Ifd:R"xR" — [0,4+00) is the function given by (13), then d is a metric on R". If
d:C" x C" — [0,+00) is the function given by (13), then d is a metric on C".

Proof: When d : R" x R™ — [0, 4+00), we put
E1:E2:...:EHZR,1ER
and
dy = dy= se. =y, = Py
where p is given by (9) with u,v € R. Therefore, the assertion of Theorem 3 for R" = F
follows from Theorem 1, since p is a metric on R.
When d : C* x C" — [0, +00), we put

Ey=E=..=E,=C'=C

and
h=&=u=d,=p

where p is given by (9) with u,v € C. Therefore, the assertion of Theorem 3 for C* = F
follows from Theorem 1, since p is a metric on C.
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5. Conclusion

One may use any norm on R", having the property (3), as an example for function ¢
from Theorem 1.
In particular, the following norms on R™ are suitable:

p(v) = T Jae (a1)
, p
plx) = () lil"), (2)
where o > 0 is a real parameter,
wiz) = Z di|z;], (as)
i=1

where d; (¢ = 1,2, ...,n) are nonnegative real numbers, such that

n

Z(l,‘ > 0.

=1

The metrics that corresponds to (a;) and (ay) (for « = 1 and «a = 2, respectively) and
satisfy (5) are given in [1].

If we use (as), when d; = 1 (1 = 1,2,...,n), then (14) represents the well known Ham-
ming’s metrics on PJ (see [2]).

There is an obvious way to generalize the Hamming’s metric on P}. We must only put

a;=p""(i=12,..n) (15)

in (as), where 3 > 0 is a fixed real parameter. When g = 1, using (14) and (as) we obtain
the Hamming’s metric again.

Using (14), (15) and (a3) we obtain also a class of metrices on P7. When 8 > k and
is integer, (a3) represents an expansion of number () in a positional number system with
base /3.

Finally, we must note that if in (14) another Boolean function is used, instead of &, then
the right hand-side of (14) does not represent a metric on Py, because the first property of
the metrics “d(x,y) = 0 iff @ = y” is violated.
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