NNTDM 8 (2002) 3, 95-106

Powers as a Difference of Squares: The Effect on Triples

J. V. Leyendekkers
The University of Sydney, 2006, Australia

A. G. Shannon
Warrane College, The University of New South Wales, 1465, &
KvB Institute of Technology, North Sydney, 2060, Australia

Abstract
All powers equal a difference of squares so that triples may be expressed as the sum of three
squares which equal the sum of another three squares. However, when » > 2 integer values
for all the components should be impossible according to the work which peaked with Wiles.
By utilising the properties of the Modular Ring Z, we illustrate how the underlying Class
structures of the integers justifies this constraint.

1. Introduction
We have previously shown (Leyendekkers and Shannon, 2001) that for N € Z

NP = x2 -2

where(x,y) = (aN(N + 1),72N(N - 1)); for N even, we also have (x,y) =
(Y4N(N + 4),YaN(N — 4)), with N = x - y.

Since
Nt = NP3 NP
= Nk - v4)
= (N4 Dxy)” — (VD).
Consider the triple
o — b = g"
with
=X -
b =2~ 1,
a"=X2-Y2,
with

X: = Zl/z(n—a)xz,

Y, = Z’/Z(H)yz,
in which z € {q,b,c}. Thus Equation (1.4) may be expressed as

X+ + Y =Xo+ Yo +X3

(1.1)

(1.2)
(1.3)

(1.4)

(1.5)

Let P(x,y,z) and P'(x,)',z") be any two points on the surface of a sphere with centre

C(0,0,0) and radius d. Then the equation of the sphere is
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x>+ 42t =2 =x?+y? + 2"

which is a geometric expression of the fact that the sum of three squares can equal the sum
of another three squares. This paper examines the foundations for powers higher than 2 by
considering the parity structures in the modular rings. For related research the reader 1s
referred to the work of Dujella (1996), Ewell (1992) and Zia (1991).

1.2t

e2-b=a3 (1.6)

and

c;-b} = aj (1.7)

represent two primitive Pythagorean triples (pPts). Then, on subtracting Equation (1.7)
from Equation (1.6) we obtain

A+ b3+a3 =c}+b3+al, (1.8)

which will be true for any two pPts.
Since ¢ and a are odd and b even (that is, the pPt will always have two odd and one even
component), the parity pattern for Equation (1.8) is

odd + even + odd = odd + even + odd. (1.9)

Thus the sum of three integer squares can equal the sum of another three integer square
with a parity pattern of odd, odd, even.

As will be shown below, Equation (1.5) cannot have these parity groupings, which, in
turn, is compatible with the fact that Equation (1.4) cannot have integer solutions when
n > 2. However, square-triple equalities (STE) can be derived from non-pPt relationships;
that is,

but
(@ -6} - (3 -b}) = d} —ad. (1.10)

Thus, we need to analyse why Equation (1.5) is incompatible with this type of STE as
well.

2. Power Structure within the Modular Ring Z,

For notational convenience within the modular ring Zswe identify the integers by
(4r; + i) where 7 is the Class and r; the row in a tabular array of i. Obviously, even integers
€ {04,24} and odd integers € {I4,34}. There are no powers in 24 and no even powers in 3.

Odd Powers

Other properties have been discussed in detail in Leyendekkers, Rybak and Shannon
(1997) where it is shown that the Class structures for (¢, b,a) which are permissible for
Equation (1.4) are:

(T6,06,T0), (14,24, T0), Oa, Te,34), (B4, 10, 30).
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Thus odd ¢ € 14, whereas odd a € {14,34}. Evenc € {04,254} and 0odd b € 14, but even
b € {04,24}. Table 1 shows the Class structure of the various components of Equation (1.5).
The x,y class structure in Table 2 is from Leyendekkers and Shannon (2001).

Classofz| m* [|2%3) 201 | X =240, | ¥, = 2405,
14 34V | T4 |T4|04| TaxTy=T14 | T4x04 =04
14 3024 | 1a%¥35=3 | Tux2i =2

3, 34 Ts 24134 T4x24=24 | T4x3, =3,
04 (14| Tux04=0s | TuxIy =14

T4 34 124134 34x24=24 | 34x34=14

041 T4| 34%x04=04 | 34xT1s=34

04 34V | 04 124124 04x24=04 | 04x24=04
4 04|04 04x04=04 | 04%x04 =04

24 34V | 04 |T4134) 04xT4=04 | 04x34 =04
14 34134 04x3,=04 | 04x34 =04

n>5 34 14| 04x34=04 | O4xTy =04

Table 1:z € {a,b,c}
tPn=3Y =10 =xand ¥, = y,
Ifn=>5,andz € 24, X, € 24,7, € 2,.

N | Class of N | Row of N | Class of (x,y) | Class of (x',3") | (x,»)/(x',y") | Rows of (x,y)
1 14 0 (1404) (1,0) 0,0)
2 24 0 (3414) (3,1) (0,0)
3 34 0 (2434) (6,3) 1,0
4 04 1 2424) 0404) (10,6) 2,1
(8,0) 2,0
14 1 (3424) (15,10) 3.2
6 24 1 (1434) (3434) (21,15) 53
1 (15,3) 3,0
7 34 2 (0414) (28,21) 7,5
8 04 2 (_464) (6464) (36,28) N
(24,8) 6,2
9 T4 2 (1404) (45,36) 11,9
10 24 2 (3414) (3434) (55,45) 13,11
(35,15) 8,3
11 34 2 (2434) (66,55) 16,13
12 () 3 (2424) (0404) (78,66) 19,16
(48,24) 12,6

Table 2(a): x,y class structure (N = 1,2,...,12)
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N | Class of N | Row of N | Class of (x,y) | Class of (x',y") | (x,¥)/(x",y") | Rows of (x,y)
13 T 3 (3424) (91,78) 22,19
14 72, 3 (1430) (3434) (105,91) 26,22
(63,35) 15,8
15 3, 0:14) (120,105) 30,26
16| 0, 4 (0404) (0404) (136, 120) 34,30
(80,48) 20,12
17l T4 4 (1404) (153,136) 38,34
18] 3 Gl G5 (171,153) 4238
(99,63) 24,15
19 3, 4 (2434) (190,171) 4742
20 0, B35 (0.04) (210,190) 52,47
(120,80) 30,20
21 14 5 (3424) (231,210) 57,52
22 3, 5 gty KT (253,231) 63,57
(143,99) 35,24
o § R 0,14 (276,253) 69,63
24| 0, 6 (0404) ©404) (300,276) 75,69
(168,120) 4230
25| 14 6 (T.04) ' (325,300) 81,75

Table 2(b): x,y class structure (N = 13, 14,..25)

From Table 1 the parities of the various components of Equation (1.5), for the various
class systems can be listed as in Table 3.

System | X |\ ¥} | Vi | X; | V2 | X}
140414 | odd {even | even | odd | even | even
142414 | odd |even |even | odd |even | even
041434 | even |even | odd | even | even | odd
241434 | even |even | odd | even | even | odd

Table 3: Parities of the components of Equation (1.5)

Obviously, the parity structure of “odd-even-even” is not consistent with the results from
the pPts. Division by 4 can yield two odd components but the third component will then be
non-integer. Hence, we need only consider the STEs obtained from Equation (1.10) and
analyse why Equation (1.5) is incompatible with these. Examples of Equation (1.10) derived
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STEs are displayed in Table 4.

Class types Component Values of rows
for X7, values containing components
(040434)(0404T4) | (4,12,7)(8,8,9) (1,3,1)(2,2,2)
(8,16,11)(4,20,5) (2,4,2)(1,5,1)
(12,28,15)(24,24,1) (3,7,3)(6,6,0)
(20,36,15)(24,16,33) (5,9,3)(6,4,8)
(40,12,23)(28,20,33) |  (10,3,5)(7,5,8)
(56,44,47)(16,80,25) | (14,11,11)(4,20,6)
(042474)(240434) (4,6,5)(2,8,3) (1,1,1)(0,2,0)
(4,22,5)(10,8,19) (1,5,1)(2,2,4)
(12,22,13)(10,24,11) (3,5,3)(2,6,2)
(140404)(342424) | (13,12,4)(15,10,2) (3,3,1)(3,2,0)
(17,24,8)(11,18,22) (4,6,2)(2,4,5)
(340404)(142424) (3,4,4)(1,6,2) (0,1,1)(0,1,0)
(19,28,32)(25,38,10) (4,7,8)(6,9,2)
(342424)(T42424) | (27,30,2)(21,34,6) (6,7,0)(5,8,1)
(342424)(340404) | (11,14,14)(7,20,8) (2,3,3)(1,5,2)
(140404)(T42424) | (5,4,12)(9,10,2) (1,1,3)(2,2,0)
(140404)(T40404) | (5,4,16)(13,8,8) (1,1,4)(3,2,2)

Table 4: STEs from Equation (1.10)

In Table 5 we list the possible Z, systems for (X Y;Y,) and (X,Y.X};) that are
permissible for ¢, b,a.

Class of
T4 vV 3—4

¢,b,a Classes
(T404T4) V (142414)

(X YpYa)(XaYcXs)
(140404)(T40404) *
(140424)(340404)
(340404)(142404)
(340424)(342404) %
(040434)(240414)
(040414)(040414) *
(042434)(240434) *
(042414)(040434)
TaBle 5(a): Possible Z4 systems for (X.YY,) and (XoY.X3)
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Class of n | c,b,a Classes | (X:YpYa)(Xa¥cXs)
T4 (041434) (040474)(240474)
(042434)(040434)
(040434)(040414) *
(042414)(240434) *
34 (241434) (040434)(240414)
(040414)(040414) *
(042434)(240434) *
(042414)(040434)
14 (241434) (040414)(240414)
(042434)(040434)
(040434)(040414) %
(042414)(240434) *
Table 5(b): Possible Z4 systems for (X.Y3Y,) and (XY X3)

. Non-asterisked sets are incompatible with each other. This is because squares of integers
from 24 are in odd rows of 04, whereas squares of integers from 04 are in even rows in 0.
The odd squares are always in 14 in an even row, 7|, with 61, unless 3|N when

J
rp=2+18Y i
i=1
with
ri=6K;i=0,1,23,..
and X is a generalized pentagonal number defined by

X = Von(3n—1), eveni,
’ Yn(Gn+1), oddi,

with » = 1,2,3, ... (adaptations of Honsberger (1970) and Niven and Zuckerman (1966)).
This gives

. { a(i+2), ieven,
L i+ 1), i odd.

Hence, for the system (140424)(340404) we obtain for the X, Y, squares the Class systems:
(140404) = (140404),

which, in terms of the row functions, becomes
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4Ry + 1) +4Ro + 4R}y = (4R} + 1) + 4ro + 4r), 2.1)

Ry will be odd (as Y, € 24), but all other rows will be even so there is parity
incompatibility.

We know from Fermat’s Last Theorem that even the asterisked sets cannot give integer
solutions for all the components. Why does the integer structure prevent this? Here we
illustrate the answer to this question for a few representative sets. As shown previoustly
(Leyendekkers and Shannon, 1999,2000) an exclusion row factor underlies the failure to find
integer solutions; that is, the class and row structures of the systems cannot accommodate a
sum or difference of two same-powers in a site reserved for that power in Zs whenn > 2.

Consider the system (c,b,a) (211434) € 14 with power n € {5,9,13,...} and the
(X YpYa)(XaYeXp) systems (040434)(040414) (Table 5). We take n = 9 as an example.
Then with

X, = gio-fly, = x,
and
Y, = Z3yz,

the following relationships can be deduced.
Consider component c.

Here

c=4r, +2,
¢ = (4ry +2)° = 4Ry,
(Class 24 contains no powers), where
Ry = 167‘% + 24}‘% s 12}‘2 +2

and must be even, and (x.,y.) are given in Table 6. Since ¢* € 04 and 04 x 44 = 04
(where A represents any of the four classes), three possible (x.,y.) need to be considered
(Tables 6,7).

Class of z | x; | y, | Parity of | Parity of rows of
rowofz | X,y & x.,V.,
14 14|04 e same
34124 0 opposite
34 2413, e opposite
04 14 0 same
04 25 124 0 opposite
0404 e same (even)*
24 14134 0 same
3,3,] oore opposite*
3,014 e same

Table 6: Row parity constraints from Table 2;
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* parity of rows of x.,y;

As can be seen (Table 7), X, and Y. always fall in rows of the same parity, namely even.
This result applies for all » € T4,n > 5, since
(4ry +2)" = (4r2)" +2m(4r)" ' + ... + 2" 2.2.)

with m = Ya(n —3), ¥a2™ will always be even (n > 5,n € {9,13,17,...}). Hence, Ry will
always be even.

. 7 Ve Xe ¥ Parity of rows
of X., Y,
4ry+1 |4r;+3 | 4(4rRo+Ro) |4(4rsRo +3Ro) | same (even)
413+ 3 |41 +3 | 4(4rsRo + 3Ro) | 4(4r3R0 + 3Ro) | same (even)
4ry +3 | 411+ 1| 4(4r3Ro +3Ro) | 4(4r1Ro+Ro) | botheven |

Table 7: Row parity constraints for X, Y,

Consider component b.
Here

b=4r1+1,
b? = 4R +1

with
R} = 16r3 +12r% + 3r4,

and from Table 6 for the (x.,y) triple system of (040434)(040414), b will be in an even

row, that is, 71 is even, and so R is also even. With x, € 14,y5 € U4, and with
Xp € 14,5 € Oy,

Xs = 4(4R:R} + Ry +R1) + 1,
Yb = 4(4R'1r0 + ro),

(2.3)
(2.4)
in which R; and o represent the rows of x;, and y,, respectively. Since, R; and ro have

the same parity, we can construct Table 8, where it can be seen that X} and Y fall in rows
with the same parity..

Ry | Ry |rowofX,| R} | ro |rowof?,
even | odd odd even | odd odd
even | even even even | even | even

Table 8: Parities - component b

Consider component a.
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Here
a=4r; + 3,
a = 4R + 3,
with
R3 = 1673 + 3675 +27r3 + 6.
Since x, € 0, and y, € 14, 73 is odd (Table 6) and so R is odd. With x, = 4r¢ and
Va = 47’1 + 1,
Xa = 4(4R3r0 + 37’0), (25)
Y, = 4(4R3r1 +3r; + R3) + 3. (26)

From Table 6, r¢ and r; have the same parity so that Table 9 can be constructed. This
component differs from the other two in that the rows in which X, and Y, fall are of opposite

parity.

R; | ro |RowofX,| R; | 1 |Rowof?Y,
odd | even even odd | even odd

odd | odd odd odd | odd even
Table 9: Parities - component a

These results show that the possible row combinations for the (X, ;) system
(040434)(040414) are those in Table 10.

Xe | Yo | Yo | Xa | Yo | Xp

even | even | odd | even | even | even

even | odd |[even | odd | even | odd
Table 10: Permissible rows for the X, Y, components

As can be seen from Table 4, the row systems for the (X.Y,) system (040434) (040414)
are (0,0,0)(e,e,¢); (e,e,e)(0,0,0),(e,0,0)(0,0,¢) or (e,0,0)(e,¢,¢) which do not appear in
Table 10. Similar row systems operate for the (X;Y;) system (042414)(240434) so that
viable systems are ruled out for (c,b,a)(241434) withn = T4 (Table 5).

The (c,b,a) system (041434) with n € 14 also contains these (X;Y,) systems. Here
c=4ro,b=4r1+1,a = 4r; +3 sothat forn = 9

X, = (4r0)*xc = 4Rox (2.7)
with x. € {24,04} and Ry is even.
Y, = 4Roy. (2.8)
with y. € {24,04}.
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Thus, both rows for x. and y. will be even, whereas they should be of opposite parity if
they are to fit the (040434) (040414) or (042414)(240434) row systems. Similar analyses can
be made for the other systems in Table 5.

Even n.

When 7 is even, the various solutions may be found in Hunter (1964). The class
structures of (¢, b,a) permissible for Equation (1.4) are (14,04,14), (14,24,14), (14,04,34),
(14,24,34). In this case, 2% gives a fractional power so that we use X2, ¥2 in Table 11, in
which Y = 82 and B = 8799

As can be seen from Table 11, there are six even components and two odd (X, ) so
that the same result applies as for odd » when n > 2. That is, STEs from pPts can never be
formed from (X,,Y) systems. Furthermore, when z € 34 we get the anomalous result that
Y? € 3, (Table 11), which is impossible since 34 contains no squares. This situation arises
because X2 — Y2 = 04 — 34 = 1, which is the correct class for even powers of odd
components.

Class of z n %3 | xd | 9l X2 ¥
14 0sV2s ! Ty T4|04 | TaxTy=14T4x04 =04
34 04V24| 34 |04 |T4|{34%x04=0434xT14=34
04 04V24| 04 |0410404%x04=0404x04=0,
24 04V24| 04 T4 T4104xT4=04|0sx14=04

Table 11: Classes associated with squares

Since 7 is even, z”"3) and hence X7, ¥, will only be integer if z is a square, and squares
are confined to Classes 14 or 04. Thus only the (¢,b,a) system (140414) needs to be
considered for the STEs of Equation (1.10). Let

=t b =g a=F,
then
X, = dx., ¥ = d%%y,.

Our aim here is to show how the Class and Row structure of the integers within Z4
underlies the failure to find integer solutions. We now consider an example to illustrate the
row exclusion factor explored previously (Leyendekkers and Shannon, 1999, 2002).

With ¢ € 14,6 € 04,a € T4 consider the (X.,Y,) system (340404)(140404). This will
have d € 34 and / € 14; (d? € 14, as there are no even powers in 3,).

Consider component c.

As shown previously (Leyendekkers and Shannon, 2001): x. = Y%c(c + 1) and
Ve = Yac(c—1); ¢ = 4rq. + 1, so that

Xe =d™ 1 2ric + 1), (2.9)

in which ;. is the row for ¢ in Class 14 and is always even because ¢ is a square.
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Similarly,
¥ = ek (2.10)
Since ¢ = d? and with d = 4ryz + 3,
Fie = 4ri; + 6r3q + 2. (2.11)
Since (n— 1) is odd, @ ! € 3,. Thus X, = 34 x T4 = 34; ¥, = 34 x 04 = 04.
Since (4734 + 3)"’1 = 4R; + 3, and (n— 1) is odd, R3 and 734 will have the same parity.
Therefore,
Xe=(4R3 +3)(AR1 + 1) = 4(4R\R3 + 3R + R3) + 3,
with, from Equation (2.11),
Ry = Yarie = 2rk, + 3r3a + 1.
Hence,
X, = 4R, +3,
with
R, = 4R1R5 + 3R + R3,

and we can form Table 12 in which we see that the row of X, is always odd, independent
of n.

rsa | R3s | Ry |Rowof X,
odd | odd | even odd

even | even | odd odd
Table 12: Rows of X,

Consider component b.
b e 04, b = e? withe € 04, and so e = 4rg,, so that

b = 4(4r3,) = 4R,. (2.12)
Obviuosly, R is always even. Moreover,
Xp = €™3x,
Yy = e™ys,
with
xp = bbb+ 1) = 2Ro(4Ro + 1),
Vo = Y2b(b—1) = 2Ro(4Ro — 1).
Since
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e = (4r08)n~3,

X = (4roe)™> x 2Ro(4Ro + 1)

= 444173 X 2Ro(4Ro + 1)). (2.13)
Thus the row for X} is even, and
Yy = (4roe)™ x 2Ro(4Ro — 1). (2.14)

Clearly both rows will be even. On the other hand, when e € 24,
e =4ry +2,
and
b = 4(4r}, +4re + 1) = 4Ry,

so that Ry is odd. However, rows for X; and Y, will still be even.

When (X.Y3Y,)(X.YX5) fall in the class systems (340404)(140404), in many cases, the
rows for X.Y;Y, must be of the same parity and rows of XYY, must be of the same parity
but opposite in parity to the XYY, set. For example (7,12,4)(9, 8,8) has rows
(1,3,1)(2,2,2) (Table 4). Other parity row sets are given in Table 4.

Since X} and Y} have even rows and the row which contains X, is always odd, the
required row structure for the (X;,Y,) components cannot be achieved, despite compliance in
some cases for the row of X, having odd parity.

Other systems, such as (140404)(140404) may be explored in the same way. For some
systems it might be necessary to consider the row structure of the rows themselves in order to
show compatibility.
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