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Abstract
Tt is shown that the functions R = x> +3(p + q)x> - 3% +¢*x + (p* +¢%), p.q € Z.,
andR = 3x2 -3 +q) - 1)x+ B(p? +¢*)-3(p+q) + 1) intersect at a point that is
always non-integer. A geometric analysis shows that the cubic crosses the x —axis at a point,
X, that is always non-integer, with xo = N7 (p + g+ (2pq)*), N,n € Z., where N+ is
obtained from the geometry of the curve. These results show that a general parameter
associated with the real roots of Fermat/Cardano polynomials is a function of p, g and the
geometry of the curve, which in turn yield the link with the geometry of the complex plane.

1, Introduction

We have previously discussed a family of Cardano polynomaials with no integer solutions
which are related to diophantine equations which also lack integer solutions [2]. This
exploited the way elementary number theory deals with arithmetic properties of the ring of
integers [5]. The present paper continues the analysis of these equations by using algebraic
and geometric methods to study the characteristics of the lowest member of the family, the
cubic.

Essentially, we deal with corollaries to Fermat’s Last Theorem (FLT) so that the results
complement resuits obtained with the modular ring Z, [1,4] whereby the integer structure
itself was used to explain FLT in the context of the ring of integers having many properties in
common with the ring of polynomials over a finite field [6].

2. Algebraic Analysis
Consider the equation

R=x-(@-p) - (@—gq) @.1)

P,q € Z.. Plots of this cubic for a variety of (p,q) ordered pairs display the following
characteristics. If we expand Equation (2.1), we obtain

R==x3+3p+q)x* -3 +¢*)x+ (P +¢°). (2.2)
Differentiation of R with respect to x yields

%XR_ = =3x2+6(p +q)x - 3(p* +¢?), (2.3)
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so that

x=(p+q)*(2pg)* (24)
at the stationary points. Ry, the maximum value of R will be
Rmax = 3pg(p + q) +2(2pq)*?, (2.5)
which is always positive. Rpmin, the minumim value of R, is given by
Ruin = 3pq(p + 9) - 2(2p9)*", (2.6)

which 1s also positive. The curve crosses the x —axis only once after first rising to a
maximum and then curving down into the negative R quadrant. (Graphs are given in [2]
where z = —R.) As shown previously there is only one real root when R = 0.

Consider the points with abscissae x = x; and x = x; + 1 on the curve R = f{x), with
corresponding ordinates R1, R, then from Equation (2.2)

Ry—Ry =-3x1+3Q2(p+q) - Dx; -3(p*+¢*)+3(p+q)-1.. 2.7
IfR; = 0, then
R =3x1-3Q@+q) - L)x1+ B(p* +¢*) - 3(p+q)+1). (2.8)

The point of intersection of this quadratic with Equation (2.2) will give the value of x;
and hence (x; + 1) for R = 0. Equating Equations (2.2) and (2.8) gives the value of x, at the
point of intersection as

431 - @+t -3Q0+9) - P*+¢*) - Dn +3@* +¢* —(p+q) - (PP +¢%)+1 =0.
(2.9)
For example, with (p,g) = (2,3)
Ry = —xi +15x% - 39x; + 35 (2.10)
and
Ry =3x}-27x; +25 (2.11)
so that at the point of intersection
¥ -12x2+12x-10=0 (2.12)

but this has no integer solution.
Equation (2.9) can be reduced to the Cardano form by substituting in

y=x-(p+q-1)
to yield

Vv —6bpgy-3pgp+q)=0 (2.13)
so that (x + 1), the value corresponding to R = 0 can be found. This value will always
be non-integer according to Fermat’s Last Theorem (FLT). Hence a corollary to that theorem
is that a quadratic of the form of Equation (2.8) can never intersect a cubic of the form of
Equation (2.2) at an integer value of x.
As shown previously [2], the cubic Cardano equation is the member of lowest degree of a
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family of polynomials with the same basic characteristics. Thus the point of intersection of
this type of polynomial of degree (n odd) with a related one of degree (n — 1) could be
expected to be non-integer.

More generally, with 7 € Z we can deduce a quadratic of the form

Ry =3t +3(2 =2 +q))x1 +£ =3(p+ Q)+ 3+ g, 2.14)

and this quadratic can never intersect the Fermat/Cardano cubic above at an infeger value
of x. For example, with # = 7, Equation (2.1 1) becomes

R; = 21x} - 63x; — 119, (2.15)
and Equation (2.12) becomes
x? +6x% —24x - 154 = 0, (2.16)

for which there are no integer solutions.

3. Geometric Analysis

If one draws a triangle ABC with the base BC having B at (x,R) = (0,0), C at (x¢,0) and
A at (Xm,Rm) With m = max, then BC or g will correspond to the abscissa where the cubic
crosses the x —axis, that is R = 0. We know from FLT that xo ¢ Z, so that, as a corollary,
triangles of this type will always have a non-integer base: what are the other characteristics
of such triangles?

A perpendicular 4D to the base has a length of R, and BD has a length of x. Both of
these lengths are known for a given (p,q) pair (Equations (2.4) and (2.5)), and hence A B is
known.

Since x,, < R (1:20 for (p,q) = (2,3) and 1:345 for (p,q) = (6,17)), the triangle has a
spire’ shape with A.B and A C close to 90°. With well-known trigonometric relationships
between the angles and sides of a triangle [7], it can be shown that

o = g bz)%a 3.1)
but
et = x% + R} (3.2)
and
b2 = (a—xm)* +R2, (3.3)
so that
a = 2%y, (3.4)
with
O = 1/(1 + (sin((C = B)/sin(C + B))).
Now
C-B~0,
and
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C+B ~ 180°,
so that both sines will be very small. Furthermore,
sin(C + B) > sin(C - B),
so that

] - -

Values of the various quantities, for a range of (p,g) pairs, are listed in Table 1. A B and
4 C approach 909 as p and ¢ increase, but C > B and this gives the characteristic shape of

the triangle.

P.q Ry s AB AC :—E—é%
2,3 |173.13844 8.4641016 | 87.2013 | 88.8330 | 0.4117453
1,3 | 65.393877 | 6.4494897 | 84.3674 | 87.7512 | 0.4304437
2,1 34 5 81.6341 | 86.5419 | 0.4175229
2,5 | 388.88544 | 11.472136 | 88.3103 | 89.3163 | 0.4239722
34 | 487.15 | 11.898979 | 88.6008  89.4148 0.4102368
3,11 | 2458.3731 | 22.124038 | 89.4844 | 89.7989 | 0.4387382
6,17 12865.406 | 37.282857  89.8340 | 89.9335 | 0.4283082
89 7128 29 89.7669 | 89.9022  0.4089641
2437 | 312194.57 | 103.14261 | 89.9811 | 89.9921 | 0.4121703
54,7 | 110747.13 | 88.495454 | 89.9542 | 89.9839 | 0.4785522
Table 1: Sine ratios |
P.q 20 N n
2,3 | 14166861 | 12878365 | 47
1,5 | 1.3981676 13564459 49
2,1 | 1410912 | 3784398 |44
2,5 | 1.4045218 12060554 |48 |
3,4 14182015 | 9548722 |46
3,11 | 1390107 | 3803808 |46
6.17 | 1400258 | 1382734 |42
89 | 14194826 2451676 42
2437 | 1.4162598 12697482 | 47
| 54,7 | 1.3526746 12146190 | 54

Table 2: Some ranges of 2Q
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For the (p,q) range considered, 20 ranges from 1.35... to 1.419... (Table 2) and is found
empirically to be of the form N7, Since rational numbers may also be expressed in this
form (for example,

1.1 = 1104923146
and
1.3 = 68643771/60)

and 2 values here appear to be irrational, there could be functional differences between
the n and N of rational and irrational numbers. Furthermore, since

- tan B
20=1+ o

and tand in the 6 range of Table 1 goes from 6 to co, obviously (tanB/tanC) will have a
large number of rational values in the range. Of course, even rational values of 20 must give
non-inieger values for g in Equatioti (3.4) ih order o conform 1o FLT. However, the angle
pairings in Table 1 are not consistent with rational values of (tan B/tan () in the restricted
range of the ‘spire’ triangle.

From Equation (2.4), the value of x,, € A4BC is given by

Xm = (p+q)+ (2pq)”, (3.5)
so that the base ¢ € AABC can be represented as
a=xo=N"((p+q)+(2r9)"), (3.6)

which cannot be integer. Similar analyses can be made for the higher members of the
Cardano family.

We have-previously shown [4] that the roots of the Fermat/Cardane polynomials are
given by

Xo = (p+q)+(n—1)(2pg +e)*, nodd or even, (3.7)
and
xo = (p+q)— (2pq +d)*, neven. (3.8)
Thus, for the cubic
xo = (p+q)+2(2pg+e)”, (3.9)
or, we can use [4]
xo = (p+q)+(E+2)2pq)". (3.10)

P n7lin 2y + (p+Q)(N1/’T— })
2pg)”

so that the general parameter £ can be related to the geometry of the curve for the cubic.
Furthermore [4}
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) . N
E= ( g J) (3.12)

where 6 (52° < 8 < 60¢) is the angle for the complex conjugate pair of the remairiing
roots of the cubic. This links the geometry of the real and complex planes.

4. Concluding Comments

The same geometric analysis can be made for all higher polynomial powers, as each has
only one maximum to the curve and the same type of *spire’ triangle arises. For example, in
the quartic case there are only two real roots and the triangle will embrace the positive root
since the maximum occurs in the positive (x,R) quadrant. This applies to all even powers
with two real roots and the remainder complex. All odd powers have only one rational root
and the ‘spire’ triangle always results. (Further research would be to apply Turner’s
transformations in Fibonacci geometry to these ‘spire’ triangles [9].) Table 3 displays some
results for the quartic and quintic cases,

\power 4 4 5
p.q 2.3 34 2.3
xo | 15.532736 21.870141|19.0803408
Xm | 11.9909756 | 18.632807 | 15.532737
Rn | 4175018 | 14964.169 | 141089.3
C | 89.951511 |89.987605 | 89.998559
B | 89.835479 | 89.928658 | 89.993692
20 | 1.2947356 | 1.1737542 | 1.228439
N | 11679080 | 4779773 | 14069792
n 63 96 80

Table 3: Quartic and quintic cases

Churchhouse [1] has expounded the merits of using the computer to generate and test
number theoretic conjectures without going so far as trying to find machine proofs of any of
the results. One can thus use the compuier in inieractive mode 1o probe for evidence. For
instance, in the context of this paper, some exploratory graphs for x = N follow for
irrational and rational x with Table 4 providing the key to the points highlighted.
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X N=x" n

S
<

A v7-1=1.6457513 | 8387928 | 32
B | v10-2 =1.1622777 | 1861013 | 96
C | v17-3 =1.1231056 | 1787124 | 124
D | Vv18-3 = 1242640 |2603147 68
E | vV19-3 = 1.3588989 |6202191 | 51
F | v20-3 = 14721360 | 5222961 | 40
G | V26 -4 =1.09900195 | 2493688 | 156
H | v27-4=1.1961524 | 1670790 | 80
I | V30-4=14772256 | 4059064 | 39
I | vV31-4=1.5677604 | 1774129 | 32
K | v37-5=1.0827625 | 3363398 | 189
L | vV38-5=1.164414 | 1637183 94
M | V39-5=1244998 | 7114477 | 72
N | V51 -6 =1.1414284 | 1402844 | 107
O | v52-6=1.2111025 | 2097731 76
P | V53-6=1.2801099 | 4459947 | 62
Q | V54-6=13484692 | 5645912 52
R | V71 -7 = 14261498 | 8658270 | 45
S | V74-7 = 1.6023253 | 3564690 | 32

Table 4: Legend for graphs
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