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The following Weierstrass’s inequality is well-known:
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where aq, as, ..., a, are positive real numbers (see, e.g., [1]).
Let for each positive real number a: [a] denotes its integer part and let {a} = a — [a].

We shall modify Weierstrass’s inequality to the form (for the same numbers):
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The proof is trivial, e.g., by induction. Really, for n = 1, i.e., for only one positive
real number aq, (2) it obvious. If we assume that it is valid for some n real numbers

a1, asy, ..., 0y, then by induction:
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Now, we shall note that
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because (1) for [a1],[az], ..., [a,]. Therefore, (2) is more powerful than (1).
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