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Abstract:
The modular ring Z6 defines integers via (6rt + (/' -  3)) where i is the Class and r, the row 
when tabulated in an array. Since only Classes 2g and 4(; contain odd primes, this modular 
ring is ideally suited for the analysis of twin primes. In considering a series of integers, a 
simple method is used to calculate rows (F  rows) that do not contain twin primes. This allows 
the distribution of other primes to be found. Then, in considering the corresponding array of 
rows, elimination of the F  rows yields the rows which contain twin primes. The calculations 
are facilitated by the use of the right-end digit (RED) technique.

1. Introduction
Twin primes are pairs of primes {p,p + 2} that are known to occur up to very high 

numbers, such as

242206083 x 23880 ± 1,

a discovery due to K-H Indlekofer (Forbes, 1997). The distribution of twin primes and 
whether their supply is infinite are unsolved problems (Dunham, 1994) and part of the larger 
problem of the density of prime numbers (Boyer, 1968). Twin primes can be thus part of a 
broader prime number research agenda (Holben and Jordan, 1968; Ramachandra, 1998). 
Properties of sequences of twin primes may be found in Abramowitz and Stegun (1964) and 
Ribenboim (1989).

Here we analyse the structure of twin-primes distributed within the modular ring Ze.
This allows the twin primes to be represented by an integer, the row, in a tablular 
representation of Z&. Rows which do not contain twin primes are easily identified and hence 
the remaining rows must contain the twins. Calculations can be simplified by using a right 
end-digit classification system.

In effect, using primes, we build up integers within rows of the modular ring Ze in such a 
way that the structure of each row is revealed. This in turn gives the distribution of primes 
and allows the extraction of rows which contain twin primes. As well, the underlying 
structure of the Ze integer array is revealed, and this should be of general use in seeking to 
understand the basis of a wide range of tests of primality and compositeness (Riesel, 1994). 2

2. Twin Primes in the Modular Ring Z6
The best modular ring for analysing twin primes is Ze (Leyendekkers el al, 1995,7). 

Integers in Ze may be represented by(6r, + (/' -  3)) in which i is the class and r is the row. 
Only Classes 2e and 4e contain odd primes. In the other odd number class, 6e, all the 
integers, n, are divisible by 3.

The advantage of Zs is that the twin primes (p i,p i) occur in the same row of the tabular



array with p\ = (6ri -  1) and p i = (6^4 + 1) and with r2 = ri = R', so that 
(p 1 + p i)  = 6(2F').Thus the sum of twin primes is an even integer A g 36 in an even row. 
The integer separating the twin primes Ups) will be VzN, since V2N -  1 + 'AN + 1 = N. The 
row which contains 'AN is R1 e 3e, so 'AN = 6R'.

If either of the integers in 2(, or 46 is composite, then twin primes will not occur. The 
rows which contain composite integers (designated as F o r forbidden rows) are easily 
obtained as follows.

A composite odd integer, M, is given by(Leyendekkers & Rybak, 1995)

M  = p 1 + 2p{s -  1) (2.1)

wherep  is a prime and,v = 1,2,3,4,...
Obviously p\M, so that for integers M2 e 26,

M 2 — 6r2 -  1

= p 2 + 2p(s-  1)

so that

r2 = [lA{p2 + 1 )+ p(s  -  l)]/3 

and for composite integers in 4e

(2 .2)

M 4 =  6r4 +  1

= P2 + 2p(s -  1)

so that

r4 = ['A(p2 - \ ) + p ( s -  l)]/3 (2.3)

and p  * 3 since all M  : 3jATare in 65. The F rows are therefore given by

R = Ro + pt (2.4)

with 1 = 0,1,2,3,... Ro functions are listed in Table 1.

Class of M Class ofp •So Ro
2.6 26 2 ('A(p2 + \)+ p)/3

46 3 (Viip2 + 1) + 2p)/3

46 26 & 46 1 (p2 -  l)/6
Table T. Rq Functions

Examples of F  rows for 4 < R < 100 are given in Table 2. As can be seen, only seven 
primes are needed to build up the composite integers in the first 100 rows.

The remaining rows will thus contain tps; these rows, R1, are:
1,2,3,5,7,10,12,17,18,23,25,30,32,33,38, 40,45,47,52,58,70,72,77,87,95,100. The values of 
the tps are simply obtained from 6R' ± 1.

The rows can be thought of as slots in the six (infinite) columns of the Ze integer array. 
As the period of a prime brings it around into a slot again (p jumps) this p  will have to join 
with primes already there to form composite integers. Some slots, however, remain empty
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until new primes occur in them. In effect, Table 3 displays the row and integer anatomy of 
the modular ring Z6 for the first 300 odd integers. The character of each F  row, in terms of 
odd integers relatively prime to 3, is clearly shown.

When the recurrence of a row is unity, one of the class (26,46) integers must be a prime, 
in the class occupied by AT. The classes of AT and p  are obtained from Equations (2.2) and 
(2.3) as illustrated in Table 2.

When the F  rows occur more than once a prime will appear provided AT is confined to 
one class. For example, from Table 3, row 27 occurs only once and has AT in Class 26 with a 
factor 7. Thus Class 4& must contain a prime (given by 6 x 27 + 1 = 163). Row 79 occurs 
three times and both Classes and 46 are occupied by composite integers which have the 
factors 11 e 2e and 5,19 for AT g 46- On the other hand, row 99 occurs three times but 
Class 26 is not occupied by any AT.

For R > 1, the right end digit (RED) of a row which contains twin primes can only be 
0,2,8 or 3,5,7. This is easily understood from Table 4. When R* g {1,4,6,9}, one of the 
odd integers in the row for Classes 26 or 46 must have the RED equal to 5, so that row cannot 
contain a twin prime. When the RED * 5 for the integer, the REDs occur as couples
(9,1),(1,3) or (7,9).

5 11 17 23

2 6 24 54 96
5 11 35 71 119
8 16 46 88
11 21 57 105
14 26 68
17 31 79
20 36 90
23 41 101
26 46
29 51
32 56
35 61
38 66
41 71
44 76
47 81
50 86
53 91
56 96

Table 2(a): Forbidden Rows for AT e 26: Class 26 Primes
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Primes

Interestingly the sum tps gives an even integer with a RED that is compatible with the 
RED of a square. However, rows which contain squares in 36 equal 6j2,j = 1,2,3,... Thus, if 
the sum of twin primes equals a square, R = 3y'2, then (R/3)'/'2 e Z. Of the 109 rows which 
contain twin primes for 500 < R < 1500, only two fulfil this requirement, namely, 588 and 
675 (as in Section 3).

When sorting for twin primes with Equation (2.4) only specific values of the RED for t 
will yield R* = 0,2,8,3,5,7. Thus only a limited number of t* need to be considered. Tables 
5(a) and (b) have t* values that give R* = 0,2,8,3,5,7.

3. Generalization for R>100
Any range of R can be analysed in the above manner. As an illustration we consider the 

range of R as 500 -  1500. For this one thousand-row range the complete set of odd integers, 
prime to 3, is obtained from just 22 primes. The primes and ranges of t (for Equation (2.4)) 
which are needed to calculate the forbidden rows are shown in Table 6.

The frequency of the F  rows and the classes in which the corresponding AT values occur 
(either 2 e and/or 4e) indicate all the primes. Primes must occur when only one of the classes 
shows up in the F  row analyses even though that class appears with the F  row more than 
once (Table 3).

If only the tps are required then selected values of t (as in Table 5) are used. All rows 
with REDs 0,2,8 or 3,5,7 that do not appear as F  rows will therefore contain tps.

Table 7 lists the rows which contain tps for the range 500 < R < 1500.
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Table 2(c): Forbidden Rows for M  e 46

R* 1 9 4 6 0 2 8 3 5 7
(6r2 -  1)* 5 3 o 5 9 1 7 7 9 1
(6r4 + 1)* 7 5 5 7 1 3 9 9 1 3

Table 4: Right End Digits
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Row Recurrence Class of M Factor p Row Recurrence Class of M Factor p

4 1 4 5 34 4 5
6 1 2 5 35 1 2 11
8 1 4 7 36 2 2 5
9 1 4 5 4 7
11 1 2 5 37 1 2 13
13 1 2 7 39 1 4 5
14 1 4 5 41 3 2 5,7
15 1 4 7 4 13
16 1 2 5 42 1 4 11
19 1 4 5 43 1 4 7
20 2 2 7 44 1 4 5

4 11 46 2 2 5,11
21 1 2 5 48 2 2 7
22 1 4 7 4 17
24 2 2 11 49 1 4 5

4 5 50 2 2 13
26 1 2 5 4 7
27 1 2 7 51 1 2 5
28 1 4 13 53 1 4 11
29 2 4 5,7 54 3 2 17
31 2 2 5 4 5,13

4 11 55 1 2 7
34 2 2 7 56 1 2 5

Table 3(a): Frequency of Forbidden Rows

P* t*
1,9 0,2,8,3,5,7
3 0,4,8,3,5,9
7 0,2,6,1,5,7

Table 5(a): Class of M  = 46
p* e 26 t* p* e 46 t*

3,7 2,4,8,3,7,9 3,7 0,2,6,1,5,7
9 0,2,8,3,5,7 9 0,6,8,1,3,5
1 4,6,8,1,3,9 1 2,4,6,1,7,9

Table 5(b): Class of M  = 26
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Row Recurrence Class of M Factor p Row Recurrence Class of M Factor p

57 2 2 11 80 1 4 13
4 7 81 1 2 5

59 1 4 5 82 1 4 17
60 1 4 19 83 1 2 7
61 1 2 5 84 1 4 5
62 1 2 7 85 1 4 7
63 1 2 13 86 2 2 5
64 3 4 5,7,11 4 11
65 1 4 17 88 2 2 17
66 1 2 5 4 23
67 1 4 13 89 2 2 13
68 1 2 11 4 5
69 2 2 7 90 2 2 7,11

4 5 91 1 2 5
71 3 2 5,17 92 2 2 19

4 7 4 7
73 1 2 19 93 1 4 13
74 1 4 5 94 1 4 5
75 1 4 11 96 2 2 5,23
76 3 2 5,7,13 97 2 2 7
78 1 4 7 4 11
79 3 2 11 98 1 4 19

4 5,19 99 3 4 5,7,17

Table 3(b): Frequency of Forbidden Rows

4. Concluding Comments
As noted previously (Leyendekkers & Shannon, 2000), the sum of y ,  where p  is a twin 

prime, taken over all twin primes, converges to Brun’s Constant, B\ that is,

B = 4 £ v
N j -  4

00

* 1.9022,

where Nt is the sum of the two primes in the ith twin prime set and R, is the row in Z(,
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which contains the zth twin prime set. The difference between the non converging sum

or zr and B is approximately or 1.2393816. (For n, -A < 0 when N e 34 c  Z4.) 
Ranges of R to be analysed can be kept quite small so that even though more primes are 

needed for large numbers, the corresponding range of t will not be excessive.
Other constellation primes are more precisely defined in Leyendekkers and Shannon

(2000).
Within Z6, the triple (p,p + 2,p + 6) always follows the ordered triple (26,?6,26); that is, 

this triple always starts with a Class 2fl prime. On the other hand, the triple (p,p + 4,p + 6) 
constellation follows the order (4f„26,46) and cannot start with a Class 26 prime. The 
quadruple (p,p + 2,p + 6,p  + 8) starts with a Class 2& prime and follows (26,46,26^46). For 
related work by A Schinzel see Halberstam and Richert (1974).

M e  46 M e  26

P Ro Range of t P Ro Range of t

5 4 100,299 5 6 99,228
7 8 71,213 11 24 44,134
11 20 44,134 17 54 27,85
13 28 37,113 23 96 18,61
17 48 27,85 29 150 13,46
19 60 24,75 41 294 6,29
23 88 18,61 47 384 3,23
29 140 13,46 53 486 U 9
31 160 11,43 59 600 0,15
37 228 8,34 71 864 0,8
41 280 6,29 83 1176 0,3
43 308 5,27 89 1350
47 368 3,24 7 13 70,212
53 468 U 9 13 37 36,112
59 580 0,15 19 73 23,75
61 620 0,14 31 181 11,43
67 748 0,11 37 253 7,33
71 840 0,9 43 337 4,27
73 888 0,8 61 661 0,13
79 1040 0,5 67 793 0,10
83 1148 0,4 73 937 0,7
89 1320 0,2 79 1093 0,5

Table 6: Data for the Calculation of Forbidden Rows, 500 < R < 1500. 
For M  e 26,5, ..89 are 2e primes and 7,..., 79 are ^primes.
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R'* Row Numbers Nos of Rows

0 500 520 550 560 590 670 710 800 850 880 920 
940 980 1050 1060 1110 1130 1160 1260 1370

22

2 542 562 612 642 682 712 822 872 942 1022 1092 
1132 1202 1222 1372 1382

16

8 528 578 588 628 688 758 798 828 978 1138 1158 
1188 1218 1248 1258 1348 1398 1438

18

3 543 593 653 693 703 723 753 773 903 913 943 
1033 1243 1293 1313 1423 1433 1473

18

5 555 565 655 675 705 775 835 975 1015 1045 1075 
1095 1115 1145 1225 1265 1325 1335 1405 1495

20

7 577 597 637 667 707 737 747 787 837 907 917 
957 1117 1127 1477

15

Table 7: Rows with twin primes for 500 < R < 1500

We should emphasise that we are not using tests of primality or compositeness as such. 
We identify rows where either Class 2e or 4& or both have a composite. This is done by the 
simple linear equation (2.4).

Hans Riesel (1994) gives many methods for finding odd composite numbers. The class 
structure of these would then need to be established in order to identify the rows that they 
occupy within Z&, and obviously such rows would not contain twin primes (unless the 
composites were confined to Class 66). As well, those rows that have only one of the Class 
26 or 4e sites occupied must contain a prime.

Here we use primes to build up composites from Equation (2.4) so that the factors are 
known and the characters of the rows within Ze are detailed. This allows rows containing 
single primes to be identified easily. A knowledge of the Z<s integer/class/row structure 
should be useful more generally. For example, exceptions to Fermat compositeness tests for 
an integer n, or Carmichael numbers, can be given by (Riesel, 1994)

N =  (6/+ 1)(12/+ 1)(18/+ 1)

with all factors being primes with a common t. All these factors belong to 46, as does N  
itself. The smallest Carmichael number is 561 = 3 x 1 x 1 7 ,  which is unique since 3|N  e 6e 
always. Some questions follow:

Why do these numbers fall in 46?
Is there any pattern to the row occupancy?
Are there any primes in the rows occupied by the Carmichael numbers?
Do the REDs show any unique features (for a start t* ± 2,3,4,7,8)? and so on.
We should note finally that understanding the structure of integer arrays, how they are 

built up and fall into place within Zc, has been the primary aim here. The location of the 
primes and twin primes follow as a consequence. Thus the analysis given here will be of 
more general usefulness, than it would have otherwise been.
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