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The following Smarandache’s problem is formulated in [1]:
Let p be an odd positive number. Then p and p + 2 are twin primes if and only if
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is an integer.
Below we shall introduce a solution of this problem.
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where
B=(p-1)!3p+2)+2p+2.
Hence

B=3pl+2p+2((p-1)+1).
Therefore, p|B iff p|((p — 1)! + 1) iff p is a prime number (from Wilson’s theorem - see,

e.g. [2]).
On the other hand

B=(p+2)p-1)+2p+2)+2pt-2
)
=(p+2)(p-1)+2(p+2)+ -]—);—1-((1)+ )= (p+1))
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= (p+2)(p -+ 2p+2) + ——(((p+ 1!+ 1) = (p+2).
Therefore (from (p+ 1,p+2)=1for p 2 2), (7 + NBIf (p+2)|((p+1)!+1)iff p+2
is a prime number (from Wilson’s theorem).
Hence, p(p + 2)|B iff p and p + 2 are twin primes. Therefore, A is an integer iff p and
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p + 2 are twin primes. With this we solved the problem.
Finallv, we shall note that in [3] the following assertion is proved:

p and p + 2 are twin primes iff p(p + 2)|C, where
C=1p=-1iit+p+.
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It is easily to see that
B=C+3p2(p-1)1+1). (%)
From (p + 2)|(2(p — 1)! 4 1) iff (p + 2) is a prime number, from (*) and from the above
assertion from [3] we obtain another proof of the Smarandache’s problem. Also, our first
proof and (*) yields another proof of the assertion from (3).
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