ON THE 100-th, THE 101-st AND THE 102-nd SMARANDACHE'S PROBLEMS

Krassimir T. Atanassov

CLBME - Bulg. Academy of Sci., and MRL, P.O.Box 12, Sofia-1113, Bulgaria e-mail: krat@bgcict.acad.bg

The 100-th problem from [1] (see also 80-th problem from [2]) is the following:

Square roots:

 $(s_q(n))$ is the superior integer part of square root of n.) Remark: this sequence is the natural sequence, where each number is repeated 2n+1 times, because between n^2 (included) and $(n+1)^2$ (excluded) there are $(n+1)^2-n^2$ different numbers. Study this sequence.

The 101-st problem from [1] (see also 81-st problem from [2]) is the following:

Cubical roots:

 $(c_q(n))$ is the superior integer part of cubical root of n.)

Remark: this sequence is the natural sequence, where each number is repeated $3n^2 + 3n + 1$ times, because between n^3 (included) and $(n+1)^3$ (excluded) there are $(n+1)^3 - n^3$ different numbers.

Study this sequence.

The 102-nd problem from [1] (see also 82-nd problem from [2]) is the following:

m-power roots:

 $(m_q(n))$ is the superior integer part of m-power root of n.)

Remark: this sequence is the natural sequence, where each number is repeated $(n+1)^m - n^m$ times.

Study this sequence.

Below we shall use the usual notation: [x] for the integer part of the real number x. The author thinks that these are some of the most trivial Smarandache's problems. The n-th term of each of the above sequences is, respectively

$$x_n = [\sqrt{n}],$$

of the second -

$$y_n = [\sqrt[3]{n}],$$

and of the third -

$$z_n = [\sqrt[m]{n}].$$

The checks of these equalities is straightforward, or by induction. We can easily prove the validity of the following equalities:

$$\sum_{k=1}^{n} (2k+1).k = \frac{n(n+1)(4n+5)}{6},\tag{1}$$

$$\sum_{k=1}^{n} (3k^2 + 3k + 1).k = \frac{n(n+1)(3n^2 + 7n + 4)}{6}.$$
 (2)

Now using (1) and (2), we shall show the values of the n-th partial sums

$$X_n = \sum_{k=1}^n x_k,$$

$$Y_n = \sum_{k=1}^n y_k$$

and

$$Z_n = \sum_{k=1}^n z_k,$$

of the three Smarandache's sequences. They are, respectively,

$$X_n = \frac{([\sqrt{n}] - 1)[\sqrt{n}](4[\sqrt{n}] + 1)}{6} + n - [\sqrt{n}]^2 + 1).[\sqrt{n}],\tag{3}$$

$$Y_n = \frac{([\sqrt[3]{n} - 1)[\sqrt[3]{n}]^2(3[\sqrt[3]{n} + 1)}{4} + (n - [\sqrt[3]{n}]^3 + 1).[\sqrt[3]{n}],\tag{4}$$

$$Z_n = \sum_{k=1}^n \left(([\sqrt[m]{k}] + 1)^m - [\sqrt[m]{k}]^m \right) [\sqrt[m]{k} - 1]^m$$

$$+(n-[\sqrt[m]{n}]^m+1).[\sqrt[m]{n}].$$
 (5)

The proofs can be made by induction. For example, the validity of (3) is proved as follows. Let n = 1. Then the validity of (3) is obvious. Let us assume that (3) is valid for some natural number n. For the form of n there are two cases:

(a) n + 1 is not a square. Therefore,

$$[\sqrt{n+1}] = [\sqrt{n}]$$

and then

$$X_{n+1} = X_n + x_{n+1}$$

$$= \frac{\left[\sqrt{n}\right](\left[\sqrt{n}\right] - 1)(4\left[\sqrt{n}\right] + 1)}{6} + (n - \left[\sqrt{n}\right]^{2} + 1).\left[\sqrt{n}\right] + \left[\sqrt{n+1}\right]$$

$$= \frac{\left[\sqrt{n+1}\right](\left[\sqrt{n+1}\right] - 1)(4\left[\sqrt{n+1}\right] + 1)}{6} + (n+1 - \left[\sqrt{n+1}\right]^{2} + 1)$$

$$.\left[\sqrt{n+1}\right].$$

(b) n+1 is a square (for $n \ge 1$ it follows that n is not a square). Therefore,

$$[\sqrt{n+1}] = [\sqrt{n}] + 1$$

and then

$$X_{n+1} = X_n + x_{n+1}$$

$$= \frac{[\sqrt{n}]([\sqrt{n}] - 1)(4[\sqrt{n}] + 1)}{6} + (n - [\sqrt{n}]^2 + 1).[\sqrt{n}] + [\sqrt{n+1}]$$

$$= \frac{([\sqrt{n+1}] - 1)([\sqrt{n+1}] - 2)(4[\sqrt{n+1}] - 3)}{6}$$

$$+ (n+1 - ([\sqrt{n+1}] - 1)^2).([\sqrt{n}] - 1) + [\sqrt{n+1}]$$

$$= \frac{[\sqrt{n+1}]([\sqrt{n+1}] - 1)(4[\sqrt{n+1}] + 1)}{6}$$

$$- ([\sqrt{n+1}] - 1)(2[\sqrt{n+1}] - 1)$$

$$+ (n+1 - ([\sqrt{n+1}] - 1)^2).([\sqrt{n}] - 1) + [\sqrt{n+1}]$$

$$= \frac{[\sqrt{n+1}]([\sqrt{n+1}] - 1)(4[\sqrt{n+1}] + 1)}{6} + [\sqrt{n+1}]$$

$$= \frac{[\sqrt{n+1}]([\sqrt{n+1}] - 1)(4[\sqrt{n+1}] + 1)}{6}$$

$$+ ((n+1) - [\sqrt{n+1}]^2 + 1).[\sqrt{n+1}].$$

Therefore, (3) is valid.

The validity of formulas (4) and (5) are proved analogically.

REFERENCE:

[1] C. Dumitrescu, V. Seleacu, Some notions and questions in number theory, Erhus Univ. Press, Glendale, 1994.

[2] F. Smarandache, Only problems, not solutions!. Xiquan Publ. House, Chicago, 1993.