ONE EXTREMAL PROBLEM. 8

Krassimir T. Atanassov

Math. Research Lab., P.O.Box 12, Sofia-1113, BULGARIA

The following problem is similar to the problems from [1-4], but it is not less interesting than the last ones: to determine the value for K for which $m_{K} = \max_{k} m_{k}$, where $n \ge 1$ is a fixed

natural number $m_{\vec{k}} = (\frac{n}{\vec{k}})^{k}$

Directly it is checked that $m_1 = n$, $m_2 = n^2/4$, $m_{n-1} =$ $\left(\frac{n}{n}-\frac{n}{1}\right)^{n-1}$, $m_n = 1$. Therefore, there exists at least one k (1 \leq k

$$\begin{array}{cccc}
\mathbf{m}_{\mathbf{K-1}} & \leftarrow \mathbf{m}_{\mathbf{K}} \\
\mathbf{m}_{\mathbf{K+1}} & \leq \mathbf{m}_{\mathbf{K}}
\end{array} \tag{1}$$

Below we shall use the inequalities (see [5]):

e.
$$\frac{2 \cdot x}{2 \cdot x + 1} < (1 + \frac{1}{x})^{x} < e. \frac{2 \cdot x + 1}{2 \cdot x + 2}$$
 (2)

Let us assume the existence of a natural number q (1 s q s N) for which:

$$m_{q-1} \geq m_{q}$$

$$m_{q+1} \geq m_{q}$$
(3)

i.e.,

$$\left(\frac{n}{q-1}\right)^{q-1} \geq \left(\frac{n}{\bar{q}}\right)^q \\ \left(\frac{n}{q+1}\right)^{q+1} \geq \left(\frac{n}{\bar{q}}\right)^q .$$

Therefore, the following two inequalities are valid simultaneously (see (2)):

$$\frac{n}{q} \le \left(\frac{q}{q-1}\right)^{q-1} \le e \cdot \frac{2 \cdot q - 1}{2 \cdot q}$$

$$\frac{n}{q+1} \ge \left(\frac{q+1}{q}\right)^{q} > e \cdot \frac{2 \cdot q}{2 \cdot q+1}$$

and hence from the first two inequalities follows that

$$q \rightarrow \frac{n}{e} + \frac{1}{2} \tag{4}$$

and from the second two inequalities follows that

$$\frac{n}{e} > \frac{2 \cdot q^2 + 2 \cdot q}{2 \cdot q + 1}$$

from where it follows that

$$q < \frac{n}{2 \cdot e} - \frac{1}{2} + \frac{1}{2} \cdot \sqrt{\frac{n^2}{e^2} + 1}$$
 (5)

From (4) and (5) it follows that

$$\frac{n}{e} + \frac{1}{2} < \frac{n}{2 \cdot e} - \frac{1}{2} + \frac{1}{2} \cdot \sqrt{\frac{n^2}{e^2} + 1}$$

which is not true. Therefore, there are not three numbers $m_{\mathbf{q}-\mathbf{1}}$, $m_{\mathbf{q}}$ q_{-1} q m for which (3) is valid. In particular, there are not three numbers for which $m_{q-1} = m_q = m_{q+1}$.

The following question is interesting, too: is there a natural number k (1 5 k 5 N) for which

Let k have this property. Then

$$\left(\frac{n}{k+1}\right)^{k+1} = \left(\frac{n}{k}\right)^{k}$$

i.e.

$$n^{K+1} \cdot k^{K} = (k + 1)^{K+1}$$

But k is not a divisor of k + i, i.e. the equality can be valid only for k = 1 and n = 2.

Therefore the system (i) has the form

$$\mathbf{m}_{\mathbf{K}-\mathbf{i}} < \mathbf{m}_{\mathbf{K}}$$

$$\mathbf{m}_{\mathbf{K}+\mathbf{i}} < \mathbf{m}_{\mathbf{K}}$$
(6)

i.e. (cf. [1]):

$$m_0 < m_1 \dots < m_{k-1} < m_k > m_{k+2} \dots > m_{N}$$

and from there it is seen that K = K.

By the way above, but using the formula:

e.
$$\frac{2 \cdot x}{2 \cdot x + 1} < \left(1 + \frac{1}{x}\right)^{x} < e. \frac{4 \cdot x}{4 \cdot x + 1}$$
an easily be seen that:

(see [5]) it can easily be seen tha

$$\frac{n}{k} \rightarrow \left(\frac{k}{k-1}\right)^{k-1} \rightarrow e \cdot \frac{2 \cdot k - 2}{2 \cdot k - 1}$$

$$\frac{n}{k+1} \leftarrow \left(\frac{k+1}{k}\right)^{k} \leftarrow e \cdot \frac{4 \cdot k}{4 \cdot k + 1}$$

Hence from the first two inequalities follows that

$$k < \frac{n}{e}, \frac{2 \cdot k - 1}{2 \cdot k - 2}$$

from where it follows that

$$k < \frac{n}{2 \cdot e} + \frac{1}{2} + \frac{1}{2} \cdot \frac{n^2}{e^2} + 1$$

i.e.,

$$k \le \left[\frac{n}{2 \cdot e} + \frac{1}{2} + \frac{1}{2} \cdot \sqrt{\frac{n^2}{e^2} + 1}\right]$$
 (8)

and from the second two inequalities

$$k > \frac{n}{2 \cdot e} - \frac{1}{2} + \frac{1}{2} \cdot \sqrt{\frac{n^2}{e^2} - \frac{n}{e} + 1}$$

i.e.

$$k \geq \left[\frac{n}{2 \cdot e} + \frac{1}{2} + \frac{1}{2} \cdot \sqrt{\frac{n^2}{e^2} - \frac{n}{e} + 1}\right]$$
 (9)

Finally, from (1), (8) and (9) it follows that for K the following inequalities are valid:

$$\left[\frac{n}{2 \cdot e} + \frac{1}{2} + \frac{1}{2} \cdot \frac{n^2}{e^2} - \frac{n}{e} + 1\right] \le \mathbb{K} \le \left[\frac{n}{2 \cdot e} + \frac{1}{2} + \frac{1}{2} \cdot \sqrt{\frac{n^2}{e^2} + 1}\right].$$

and easily can be seen that:

$$(\frac{n}{2 \cdot e} + \frac{1}{2} + \frac{1}{2} \cdot \frac{n^2}{e^2} + 1) - (\frac{n}{2 \cdot e} + \frac{1}{2} + \frac{1}{2} \cdot \sqrt{\frac{n^2}{e^2} - \frac{n}{e} + 1}) < \frac{1}{2}$$

Therefore for every natural number n there exists exactly value of K.

REFERENCES:

- [1] Atanassov K. One extremal problem., Bull. of Humber Theory and Related Topics Vol. VIII (1984), No. 3, 6-12.
- [2] Atanassov K. One extremal problem. 2., Bull. of Mumber Theory and Related Topics Vol. IX (1985), No. 2, 11-13.
- [3] Atanassov K. One extremal problem. 4., Bull. of Mumber Theory and Related Topics Vol. XI (1987), No. 1, 64-71.
- [4] Atanassov K. One extremal problem. 7., submitted to Bull. of Number Theory and Related Topics.
- [5] Polya G., Szego G., Aufgaben und Lehrsatze aus der Analysis, Erster Band, Springer-Verlag, Berlin, 1924.