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ONE EXTREMAL FPROBLEN. 8
Krassimir T. Atanassov
Hath. Research Lab., P.O.Box 12, Sofia-1113, BULGARIA

The following problem is similar to the problems from [1-4),
but it is not less interesting than the last ones: to determine

the value for X for which mx =  max mK, where n > 1 is a fixed
1<k<n
n kK
t = =
natural number mk (k).
gjregt:y it i3 checked that m’ = n, ma = n2/4. mn—i =
(ﬂ—:—i) v m = 1. Therefore, there exists at least one Kk (1 ¢ K
< n}) for which:
k-1 ¢ Mk
Beyy W “’

Below we shall use the inequalities (see [5]):
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Let us assume the existence of a natural number q (1 < g s N)
for which:
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Therefore, the following two inequalities are valid simultaneo-
usly (see (2)):
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and hence from the first two inequalities follows that
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and from the second two inequalities follows that
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from where it follows that
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From (4) and (%) it follows that
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which is not true. Therefore, there are not three numbers mq_’. mq
and mc“1 for which (3) is valid. In particular, there are not
three numbers for which m : m_ = m |
q-1 q g+i
The following question is interesting, too: is there a natural
number K (1 ¢ K ¢ H) for which
= ?
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Let K have this property. Then
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But K is not 3 divisor of k 1, i.e. the equality can be valid
only for k - i and n - 2,

Therefore the system (1) has the form
" o)
<
i.e. (cf. [1)): Tker My
m. < o %
o m’ < mk—i < mk > mk+2 T mh .

and from there it is seen that x - K.

By the way above, but using the formula:
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(3ee [5)) it can easily be seen that:
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Hence from the first two inequalities follows that
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and from the second two inequalities follows that
2
n 1 1 n n
“’a*—.e"é‘é'\/“é‘a"
) 2
i.e.
n 1 | na n
‘ K ) [2_...8 + 3 4+ 5 ;5 = B + 1) (9)
Finally, from (1), (8) amd (9) it follows that for K the follo-

wing inequalities are valid:
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and easily can be seen that:
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Therefore for every natural number n there existas exactly one
value of K.
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