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1. BEGINNING

Studying the unique minimal and maximal integer Zeckendorf representations by Pell
numbers [2], [3], [4], [5] led to the consideration [6, eqn. (2.7)] of those numbers which
are common to both representations, namely, the MinMax numbers. This idea was then
carried over to Jacobsthal numbers [7, eqn. (3.1)]. (Earlier, minimal and maximal repre-
sentations by Fibonacci and Lucas numbers had been investigated in [1].)

Here, the corresponding situation existing for Morgan-Voyce numbers is to be dis-
closed. Though the results are perhaps not quite so elegant as those for Pell numbers,
they are nevertheless of intrinsic interest and value.

Morgan-Voyce polynomials Bn(x) are defined [9] (with slight modification here) by

the recursion

(1.1 Bn(x) = (x + 2)Bn-i(x) - Bn-2(x)
with
(1.2) Bo(x) =0, Bi(x) = L

Integers resulting when we substitute x = 1in (1.1) and (1.2) may sensibly be referred to
as the Morgan-Voyce numbers Bn(1) = Bn.

Our primary aim is to examine the properties of those integers, designated by Bn, for

which
(1.3) Bn =
*—+
(1.4) = F2n+i —1 by [8; (2.2), (2.22), (4.2),. = 1]

and related matters. Coefficients in the summation (1.3) are obviously all unity. This
special summation (1.3) corresponds to the genesis of the MinMax representation numbers

in the Pell context [6, eqn. (2.7)].



One doesn’t have to be psychic to realise that, with Bo taken as 0, the sequence
materializes as:

Bo B: b2 b3 b4 bs Be B7 bs Bo Bio
0 1 4 12 33 88 232 609 1596 4180 10945

i.e., an odd number followed by two even numbers, as is inevitable from (1.4).
Extending the subscripts through negative integers, we see, mirrored in a glass clearly,
that

(1.6) B— —Bn—,

e.g., B-i =0.
Because of the coverage of the content in [2]-6] for Pell numbers, we may be excused
for providing a somewhat abbreviated account here in the Morgan-Voyce case. Only a

sample of the possibilities which give a feeling for the material is herewith displayed.

2. MIDDLE: B7

A. Properties of Bn
Elementary detective procedures reveal the following information about {Bn}.
(2.1) Recurrence: Bn=3#n_i —B. . + 1

00 -1
(2.2) Generating function:'* B[Xx 1= 1 —(4x —4x2+ a3)

a2n+| A 2n+l

i : = -1 by (1.4),
(2.3) Binet form: Bn a—( y (1.4)
where
1+ C5 1- Vv
2.4 a = =
(2.4) , o+ P )
(2.5) Simson formula: An+I~n-1 —B>nz—~Bn.
n
(2.6) Summations: Y, &2 = F2nF2n+3 ~ ni
i=1
(2.7) — FanFan+l ~ n,
i—1
(2.8) B — Pm2—(n+ 1),
i=1
(2.9) E(-1)+1B, = (-i)ml{C Il + 1y il

Proof of (2.9): Subtract (2.6) from (2.7). Then, by the Simson formula for Fibonacci
numbers,1
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(«)e Si —S2+ 353 —S\ 4 S2n — —F2nF2n+2 — ~/~2n+1 + I
Add S2n+i to both sides to get
(1?)e Si- S2T S3— on+l —Aone by (1.4), (2+3), (2.4).

Combining (a) and (/?) yields (2.9)
(2.10) Other simple properties: Bn—sp.1 = Ton=hnl 2

(2.11) Sn+ SnM — T2n-2(= lj;,n odd),
(2.12) Sn~Bn-2 = hen-ulj

(2.13) S2- SR4 = Faum 2E2n,

(2.14) sp- %o — 3F4n-2-

m Note the factors in (2.10), (2.13), and (2.14). E.g., in (2.10), s 10 - s.
C..) —55 x 123(= 10T i0).

Divertissement
Temporarily writing
(2.2) Sh—Sn+l+ Sn-1—3Sn+ 1 by (2.1),

and it is natural to consider this sum as an entity per se, so that s'0 =

13,63 = 8= 8 = T .., we readily arrive inter alia at

(2.15) K = ZBn_ ,-B h_2+2 (recurrence),
(2.16) Sh--K-, — 3F2n,

(2.17) K + = 3z/2n ~ 4,

(2.18) Bn--8n-2 = 3(Bn—5Sn-2)= 3z/2n-1 by (2.12),
(2.19) = 3~ Bz+ n,

(2.20) | Sl_n — ft'l_l

Other summations corresponding to (2.6), (2.7), (2.9) are left to the reader, with the
knowledge that the analogue of (2.9) is somewhat ungainly. Obvious additional analogues
which may be adduced are those corresponding to (2.2), (2.3), (2.5).

B. The S Grid
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Interestingly, if we continue with the superscript dash () symbolism to establish B" =
B,. &B BB, 48" .

(2.21) Bi m+l)= B%1+ B0 = Bn),

then we may verify that, for instances

(2.22) A~ B[y
(2.23) 0™ = 11—2m (induction),
(2.24) Nem) = 3nly,
(2.25) ROy 2 o anky, AmH
(2.26) M 8% = o,
(2.27) RIM) — T Bn+ 4 m) = 3mFH+ - 2m
(2.28) E®!171 = I iX>, +nB(<m).
i=1 i=1

Thus, e.g., B. " = 389.
Suppose we construct the representation-derived grid for B ~ as both m (columns)
and n (rows) vary integrally and infinitely (m = 0,1, eee;n = eeo —2 —1 0,1,2 ee9),

Some intriguing patterns then appear. For instance, we find that for

(2.29) rows(n) : Bfm) = WA"r~1I)+ 2m~1(m > 1),

(2.30) columns(m) : B~ = 3BM —BI™ + (recurrence).

Fuller investigations of the potential of this numerical grid, and of the properties of the
generalized systems B are not pursued here. Earlier formulas in (A) are re-inforced

when m = 0in (B).
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3. MIDDLE: Cn.

A. Properties of Cn.
Associated closely with {Bn} is the Morgan-Voyce type sequence {Cn} defined [8; x =
1 by

(3-1) Cn=ZCn* - Cn-2
with initial conditions
(3.2) Co = 2,(71 = 3.

Considering the unit coefficient sums Cn(CO = 0) corresponding to the representation

situation for Bni we have

(3.3) Ch = £0 {Cn = L2n[8)])
20

(3.4) — "2n-l + 1

In fact,

Co Cl ¢c2 C <c¢c4 c5 cb C
o 2 5 12 30 77 200 522

Consequences of this structure flow as hereunder.

(3.6) Recurrence: C,=3C,j-C,2- 1
(3.7) Generating function: *Q x " 1= (2 - 3x)[l - - + x3)]’ 1
2
(3.8) Binetform: Ch=a2n~1+02n~1 + 1
(39) Simson formula: Cn+ICn_i —Ch —Cn —86.
_ n
(3 10) Summations: = Eni+i+n—1—CX+n,
21
n
(3.11) XAC2i-. = Edni+n—1=C2ni+n5g
21
n
(3.12) AV — U4t 2
21

121



(3.13) Other simple properties: Bji Bn—+ — Lo2n-2i

(3.14) Chn+Bn-1 = 5F2n 2+ 2
(3.15) Bn Bn—2 — bF2n3
(3.16) Bh = Wn-Wn-
(3.17) Bn+ Bn — 3E2n,
(3.18) Bn~Bn = F2n-3—2
(3.19) B-n = —Bn+l+ 2

Following the notation in the divertissement, we define

(3.1)’ Bn ~ Bnel+ Cn i=3Cn- | by (3.6).

giving

(3.20) Gn =otn-1 - Bh_2 —2 (recurrence)

Then

(3.21) Cn-C"i = 8 go

(3.22) Bn+ Bn-1 — Ib-F2n—2+ 4,

(3.23) £ —K,_2 = 3(Cn—Cn_2) = 15F2n_3,
n n

(3.24) . = 32"Cn-n,
AL 24

(3.25) 6pn = “C+i+ 2-

Extending the superscript numeration as for Bn, we arrive at
(3.26) C<T+l) = C£> + Cj”} (C<®>=C,,).

A representation-derived grid for Q #8 may now be constructed. From this, it ensues that

(3.27) nm _ g(m) | 2"i+1

(3.28) M) = om_am=

(3.29) r(m_rdm = 3ran,-2,

(3.30) M. & = 3me5F2,2 + 2m+l,
(3.31) {\~(nm) 'n-2 = 3m(5r2n—:

(3.32) = 3mC, + C#") = 3“I;
(3.33) |ig: dm = 3mi’:‘1C , + nC<ra).
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Furthermore, the grid system allows us to infer that,

(3.34) for rows (ra) : 'r~>'rgm) = 8« ~ =277
(3.35) for columns (m) : r(m gff.(r’]“_)l tc*rfm om

Finally, there are the hybrid results

(3.36) Sim)+C<”> = 3m(Bn+ Cn) = 3" +1F2,,

(3.37) bW -C*"1 3mF2n 3-2 2m+L.

4. MIDDLE: Bh.

Define the augmented sequence H*(a,6, k) = B* by
(4.2) #;+2(a, h=) = 3*+i(a, b,k) - B*(a,b,k) +k

with initial conditions

(4.2) #J(a, 6,& = a, j0J(a,6,A)= 6.
Hence
(4.3) (0,1,1)

The first few members of {B*} are:

Bl BI Bi b; Bt b;
a b 3b—a k 86 —3a+ 4k 216 —8a + 12k 556 —21a + 33k

Immediately then
(4.5) B* —bF2n-2 —"F2n-A + k(F2n-3 —1).

Calculations readily disclose (4.1), (4.2) that

(4.6) BI 3a-6 + A

4.7 8a —36 + 4lc.

Various specializations arise, of which a sample is herewith recorded.

(4.8) «:;(i.i.i) = 2F2n-3
(4.9) b;(i,i,o) = F2n21
(4.10) b;(-i,i,o) = L2n-3i
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(4.11) AN(-A2n-2, A2n-4,2) — 2F2n-3 by [1; /as],

n
(4.12) y &1 . "M2n-l ~ &Fn-3+ &(™2n-2 ~ U+ 1) by [10],
21
o)
n
(4.13) $>*(1,1,1) =2F2n2-n + I,
21
and
(4.14) EB*(-I,I,1) = F2n.1-n + I
i—1
Observe that
(4.15) S;(2,5,-1) — =
(4.16) S;(4,13,2) _ g
(4.17) B;(5,14,-2) - ¢y,
(4.18) b:(1,2,0) _  bn [8, x = 1],
(4.19) s;(i.4,0) — <o [8, x = 1],

where {bn} is a second Morgan-Voyce number sequence [8], and {cn} [8] is associated
with it. Values of a, 6, Afor Bn and Cn are readily obtainable.

Other aspects which may be taken up as in [8] are, e.g., determinants, the generating
function, the Binet form, and the Simson formula.

Suppose we pursue briefly the concept introduced in the divertissement, namely, to
define (BJ = Bh+1+ 67 , (B tf = (SJ+1)' +

(4-20) TO (o)) = {b:+)m + B (BJ 0)=b;.

W ithout much ado, we then derive

(4.21) (s;)m = 3(e;_Dhw -h ;-2 + 2rof,
(4.22) Bln(a,b,k) = B:+3(b,a,k),

O

(4.23) B:n(l,I,fc) = 67,(1, Lfc).

Properties analogous to those evolved for B'n, and others, may now be investigated as

the spirit moves us.
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5. END

Representation number sequences bn,cn can be constructed from bn,cn (4.18), (4.19)
in a manner similar to that (1.3), (3.3) for Bn,Cn from Bn,Cn, thus creating a quartet of
numerical relations. An analysis of the properties of bn,cn resembling those for Bn,Cn is,
however, more appropriately the subject of a further offering.

Other possibilities for future development include, e.g., extension to negative sub-
scripts B-mC-n, b_n,c_n(n > 0).

Evidence that the minimal representation applicable to Bn (1.3), (1.5) is unique may
be envisaged from the emerging patterns in the abbreviated table provided for integers
N = 1,2,3,*** 35. (Zero coefficients are indicated by an empty space.) Uniqueness is

possibly the subject of another project.

N Bi b2 b3 bé N Bi B2 p3 B4 N B4 B2 b3 b4

1 3 8 2 1 3 8 2 1 3 8 2
11 3 2 1 1 24 1 1
2 2 14 2 1 % 1 1 1
3 1 5 1 2 1 % 2 1 1
4 1 1 16 2 27 2 1
5 2 1 7 1 2 8 1 2 1
6 2 18 2 2 29 11
7 1 2 19 1 2 0 1 11
8 1 0 1 1 2 31 2 1
9 1 1 21 1 2 1 1 1
0 2 1 » 1 1 3 1 1 1 1
1 11 3 2 1 3% 2 1 1 1
2 1 1 1 35 2 1 1

ABBREVIATED MINIMAL REPRESENTATION TABLE FOR
{Bn}:n = 1,2,3,4,5.

Notice that the crucial criterion for the minimal representation in ~ ffiBi (?m= 0,1,2)
i=i

Juxtaposition of 2,2 as successive coefficients in the representation does not occur,

i.e.,, 2Bn+ 2Bn+i (n > 2) is necessarily excluded.

This is so because 2Bn -f 2Bn+i —Bn+2 —Bn-\ (by (1.1), x = 1), whence

>Bn+2 ifn>2
= Bn+2 ifn=1(B0=0,(1.2),

2BnT 2B
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whereas 2Bn + 2Bn+i < Bn+2 is required.

Lastly, we comment that an analysis of a table for a maximum representation of
positive integers N by means of the Bn reveals a mixture of some specifically maximum
representations and some which coincide with the minimal representations. Reading from

the Table we see that, e.g.,

N Min. rep. Max. rep. Same/Different
7 12 12 Same
8 0 0 1 2 2 Different

This feature of the representations underscores the assertion in Section 1 that the Bn
in (1.3) correspond to the MinMax numbers for other sequences, e.g., Pell and Jacobsthal,
(but are not the totality of MinMax numbers in the current situation for Morgan-Voyce
numbers). Further investigations of these aspects are left to the private entertainment of

the reader rather than to a formal enquiry here.
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