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1. B E G IN N IN G

S tudying  th e  unique m inim al and m axim al in teger Zeckendorf rep resen ta tions by Pell 

num bers [2], [3], [4], [5] led to  th e  consideration [6, eqn. (2.7)] of those num bers which 

are com m on to  b o th  rep resen ta tions, nam ely, th e  M inM ax numbers. This idea was th en  

carried  over to  Jaco b sth a l num bers [7, eqn. (3.1)]. (E arlier, m inim al and m ax im al rep re ­

sen tations by F ibonacci and Lucas num bers had been investigated  in [1].)

Here, th e  corresponding situa tion  existing for M organ-V oyce num bers is to  be dis­

closed. T hough  the  resu lts are perhaps not quite  so elegant as those for Pell num bers, 

they  are nevertheless of in trinsic  in te rest and value.

M organ-V oyce polynom ials B n(x) are defined [9] (w ith slight m odification here) by 

the  recursion

(1.1) B n(x) = (x  +  2 )B n- i ( x )  -  B n- 2 (x) 

w ith

(1.2) B 0 (x) =  0, B 1 (x) =  1.

Integers resu lting  w hen we su b stitu te  x  =  1 in (1.1) and (1.2) m ay sensibly be referred  to  

as th e  M organ-V oyce numbers B n ( 1) =  B n.

O ur p rim ary  aim  is to  exam ine th e  properties of those integers, designated  by B n, for

which

(1.3) B n =
x — I

(1.4) =  F2n+i — 1 by [8; (2.2), (2.22), (4.2), 1  =  1]

and re la ted  m a tte rs . Coefficients in the  sum m ation  (1.3) are obviously all unity . This 

special su m m atio n  (1.3) corresponds to  th e  genesis of the  M inM ax rep resen ta tio n  num bers 

in th e  Pell con tex t [6, eqn. (2.7)].



One doesn’t have to be psychic to realise that, with Bo taken as 0, the sequence 

materializes as:

Bo B 1 b 2 b 3 b 4 b 5 Be B7 b 8 B9 Bio

0 1 4 12 33 88 232 609 1596 4180 10945

i.e., an odd num ber followed by two even numbers, as is inevitable from (1.4).

Extending the subscripts through negative integers, we see, mirrored in a glass clearly, 

tha t

(1.6) B —n — Bn—i ,

e.g., B -i = 0.
Because of the coverage of the content in [2]—[6] for Pell numbers, we may be excused 

for providing a somewhat abbreviated account here in the Morgan-Voyce case. Only a 

sample of the possibilities which give a feeling for the m aterial is herewith displayed.

2. M ID D L E : B7

A. P r o p e r t ie s  o f Bn

Elementary detective procedures reveal the following information about {Bn}.

(2.1) Recurrence: Bn =  3#n_i — B n - 2  +  1-
OO

(2.2) Generating fu n c tio n : '^  B[Xx 1 =  1 — (4x — 4x2 +  a:3)
- 1

2 = 1
(2.3) Binet form: 

where

(2.4)

(2.5) Simson formula:

(2.6) Summations:

(2.7)

(2.8)

Bn =
a 2n + l  __ ^ 2n + l

a =

a — (3

1 + C5
, P =

- 1  by (1.4),

1 -  V
2 2

>2^n+l^n-1 — Bn — ~ B n.
n

Y ,  & 2i =  F2n F2n+3 ~  n i
i= 1

— F2nF2n+l ~  n,
i—1

Y. Bi — F2n+2 — (n +  1),
i = l

(2.9) E ( - 1 ) ’+1B, =  ( - i ) n+1 { C l  +  1 ± y i l

Proof of (2.9): Subtract (2.6) from (2.7). Then, by the Simson formula for Fibonacci 

numbers, 1
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(«)• S i — S 2 +  S 3 — S \  -4-

Add S 2n+i to both sides to get

S 2 n  — — F 2 n F 2n+2  — ~ ^ 2 n + l  +  ! •

(/?)• S i - S 2 T S 3 — '2n+l — ^ 2n-\-2 by (1.4), (2 •3), (2.4).

Combining (a) and (/?) yields (2.9)

(2.10) Other simple properties: Bn —S n- 1 = T2n - F I— 1 n ?

(2.11) S n + Sn -\-1 — T2n - 2 ( =  I j ; ,n odd),

(2.12) S n ~ Bn-2 = h-J2n-■lj

(2.13) s 2 -n s 2 , =n—1 Fau ■~ 2E2n,

(2.14) s 2 -n /32 — ° n - 2 ~ 3 F4n-2-

■ Note the factors in (2.10), (2.13), and (2.14) . E. g., in (2.10) , s 10 -  s .

C 2 0 ) — 55 X 123(= loT io).

Divertissement

Temporarily writing

(2.1)' S 'n — S n + 1 +  S n- 1 —  3  S n +  1 by (2.1),

and it is natural to consider this sum as an entity per se, so tha t S '0 ■

1 3 , 6 3
o

'
0r-HII

CQ1-"
COII • • • , we readily arrive inter alia at

(2.15) K =  ZB'n _ , - B ’n_ 2 + 2 (recurrence),

(2.16) S '  -n - K - , — 3  F 2 n ,

(2.17) K  + =  3 Z /2 n  ~  4 ,

(2.18) B'n - - S '° n - 2 =  3  (Bn — S n - 2 ) =  3 Z / 2 n ~ l by (2.12),

(2.19)
n

=  3  ^  Bz- +  n ,
i~ l i = l

(2.20) S '—n —  f t '

Other summations corresponding to (2.6), (2.7), (2.9) are left to the reader, with the 

knowledge th a t the analogue of (2.9) is somewhat ungainly. Obvious additional analogues 

which may be adduced are those corresponding to (2.2), (2.3), (2.5).

B. The S Grid
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Interestingly, if we continue with the superscript dash (') symbolism to establish B" =  
B' 4- B' B"' — B" 4- B"^ n + l T ^ - l ^ n  ~  ° n + l  ' ° n - H  ■>

(2.21) B i m+1) = B%  1 +  Bt\(B‘0) =  Bn),

then we may verify tha t, for instance 5

(2.22) K>(m) _^  —71 B[m )
l— 1 7

(2.23) tii™) — °o — T 1 — 2m (induction),

(2.24) f i ( m )  ^  n

II1 3n1 17 
^ 2  n ,

(2.25) K?(m) 
^  n II«v rH

1
4+ 3n1 r rjm+l ^2n ^ 5

(2.26) ry{m)
n 1 03 ? 

3
to'

 ' II r 1 T̂ 2n-l,

(2.27) n im) —^  71 T ‘Bn +  4 m) =  3mF2n+i -  2m

(2.28) E ® ! ” 1 = r i X > ,  +  nB(<m).
i=1 i= 1

Thus, e.g., B 2 '^ =  389.

Suppose we construct the representation-derived grid for B ^  as both m  (columns) 

and n (rows) vary integrally and infinitely (m =  0,1, • • •; n = • • •, —2, — 1, 0 ,1 ,2  • • •). 

Some intriguing patterns then appear. For instance, we find tha t for

(2.29) rows(n) : B {nm) = W ^ ~ l) +  2m~1 (m > 1),

(2.30) columns(m) : B ^  =  3 B ^ \  — Bl™\ +  (recurrence).

Fuller investigations of the potential of this numerical grid, and of the properties of the 

generalized systems B are not pursued here. Earlier formulas in (A) are re-inforced 

when m  =  0 in (B).
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3. MIDDLE: Cn.

A . P r o p e r t ie s  of Cn.

Associated closely with {B n} is the Morgan-Voyce type sequence {C n} defined [8; x =

1] by

(3-1) Cn = ZCn^  -  Cn - 2

with initial conditions

(3.2) Co =  2,(71 =  3.

Considering the unit coefficient sums Cn(C0 = 0) corresponding to the representation

situation for Bni we have

(3.3) Cn = £ 0  {Cn = L 2n[ 8])
2 = 0

(3.4) — ^2n-l +  1-

In fact,

Co Cl c 2 C3 c 4 c 5 c 6 C7

0 2 5 12 30 77 200 522

Consequences of this structure flow as hereunder.

(3.6) Recurrence: C„ =  3C„_j -  C„_2 -  1.

GO

(3.7) Generating function: ^ Q x ^ 1 =  (2 -  3x)[l -  -  +  x3)]’ 1.
2—1

(3.8) B in etfo rm : Cn = a 2n~l +  0 2n~l +  1.

(3 9) Simson formula: Cn+lCn_i — C?n — Cn — 6.

(3 10) Summations:
n

=  Eni+i +  n — 1 — C2n +  n ,
2—1

(3.11)
n

X^C2i - 1  =  E4n_i +  n — 1 =  C2n_i +  n 
2—1

(3.12)
n

^ v 2̂ — L/2n— 1 “h ^ 2. 
2—1

5
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(3.13) Other simple properties: Bji Bn—i — L 2n -2 i

(3.14) Cn +  Bn- 1 = 5F2n_2 +  2

(3.15) Bn Bn —2 — bF2n_3,

(3.16) Bn = W n - W n -

(3.17) Bn +  Bn — 3E2n,

(3.18) Bn ~  Bn = F2n- 3 — 2,

(3.19) B -n = —Bn+1 +  2.

Following the notation in the divertissement, we define

(3.1)' Bn ~  Bn+1 +  Cn_ i = 3 C n - l  by (3.6).

giving

(3.20) C' —un ~  o tn-l - B'n _2  — 2 (recurrence)

Then

(3.21) C 'n -C '^ i CN1£CNCOII

(3.22) B'n +  Bn- 1 — lb-F2n —2 +  4,

(3.23) C  — C^n ^n — 2 =  3(Cn — Cn_2) =  15F2n_3,
n n

(3.24) E c : = 3 ^ C n - n ,
2—1 2 — 1

(3.25) ĉ —n =  “ C + i +  2-

Extending the superscript numeration as for Bn, we arrive at

(3.26) C<T+1) =  C£> +  Cj” } (C<°>=C„).

A representation-derived grid for Q 7n3 may now be constructed. From this, it ensues tha t

(3.27) n (m) _ g(m) _|_ 2"i+1

(3.28) Mm,)
U0 =  2m — 3m =

(3.29) r ( m) _  rdm)'-'n— 1 =  3ran „ -2 ,

(3.30) r>(m
'~/n > +  ct» =  3m • 5F2„-2 +  2m+1,

(3.31) ^(m
'~'n ) L'n-2 =  3m (5r2n—3 ) 5

(3.32) =  3mC„ + C#") =  3“  I;

(3.33) E d m) =  3m ^ C ,  +  nC<ra).
i=l i=1
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Furthermore, the grid system allows us to infer that,

( 3 . 3 4 ) for  r o w s  (ra) :
r>(m)
'~'n II CO a

1 1 to 3 1

( 3 . 3 5 ) for c o l u m n s  ( m )  : r ( m) or>(m ) C*(m ) 9  m  
—  d ' - 'n - 1  t ' n -2  Z

Finally, there are the hybrid results

(3.36) S im)+C<” > =  3m(Bn + Cn) =  3“ +1F2„,

(3.37) b W - C * " 1 =  3mF2n_3 - 2 2m+1.

4. MIDDLE: B’n.

Define the augmented sequence H*(a,6, k) = B * by

(4.1) # ; +2(a, h-> k ) = 3 ^ + i ( a ,  b, k) -  B*(a , b,k) + k

with initial conditions

(4.2) #J(a, 6, &) =  a, j0J(a,6,A:) =  6.

Hence

(4.3) (0,1,1)

The first few members of {B *} are:

B l B l B i b ; B t b ;
a b 3b — a k 86 — 3a +  4k 216 — 8a +  12k 556 — 21a +  33k

Immediately then

(4.5) B * — bF2n-2 — ^F 2n-A +  k(F 2n-3 — 1).

Calculations readily disclose (4.1), (4.2) that

(4.6) B l =  3 a - 6 + A;,

(4.7) =  8a — 36 +  4/c.

Various specializations arise, of which a sample is herewith recorded.

( 4 . 8 ) « ; ( i . i . i ) =  2,F2n-3

(4 .9 ) b ; ( i , i , o ) =  F 2n-2,1

( 4 . 1 0 ) b ; ( - i , i , o ) =  L 2 n -3 i
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(4.11) ^n(-^2n-2, ^2n-4, 2) — 2F2n-3 by [1; /as],

(4.12)

so

n
Y  &n =  ^^2n-l ~  &F2n—3 +  &(^2n-2 ~  U +  1) 
2—1

n

by [10],

(4.13)

and

$ > * ( 1 ,1 ,1 )  = 2 F 2n_2 - n  +  l,  
2 — 1

(4.14) E B * ( - l , l , l )  =  F2n. 1 - n  +  l.
i— 1

Observe tha t

( 4 . 1 5 ) S ; ( 2 , 5 , - l ) — c

( 4 . 1 6 ) S ; ( 4 , 1 3 , 2 )
=  K

( 4 . 1 7 ) B ; ( 5 , 1 4 , - 2 ) =  C n ,

( 4 . 1 8 ) b : (  1 , 2 , 0) —  bn [8, x  =  1],

( 4 . 1 9 ) s ; ( i . 4 , o ) —  c n [8, x  =  1],

where {bn} is a second Morgan-Voyce number sequence [8], and {cn} [8] is associated 

with it. Values of a, 6, A; for B n and Cn are readily obtainable.

O ther aspects which may be taken up as in [8] are, e.g., determ inants, the generating 

function, the Binet form, and the Simson formula.

Suppose we pursue briefly the concept introduced in the divertissement, namely, to 

define (B ’J  = B 'n+1 +  6 ^ , ( B t f  =  (S J+1)' +

(4-20) T O (ro+1) =  {b : +1) m  + (Bu, (B‘J 0) = b ; .

W ithout much ado, we then derive

(4.21) ( s ; ) ,m) = 3 (e ;_ 1) w - h ; - 2) <m) + 2rofc,

(4.22) B l n(a,b,k) = B:+3(b,a,k),

SO

(4.23) B :n(l,l,fc) =  6 ^ ,(1 , l.fc).

Properties analogous to those evolved for B'n, and others, may now be investigated as 

the spirit moves us.

124



5. END

Representation num ber sequences b n, c n can be constructed from bn,c n (4.18), (4.19) 

in a m anner similar to th a t (1.3), (3.3) for Bn,Cn from B n,C n, thus creating a quarte t of 

numerical relations. An analysis of the properties of b n, c n resembling those for Bn,Cn is, 

however, more appropriately the subject of a further offering.

O ther possibilities for future development include, e.g., extension to negative sub­

scripts B -m C -n , b _ n, c_n(n > 0).

Evidence th a t the minimal representation applicable to Bn (1.3), (1.5) is unique may 

be envisaged from the emerging patterns in the abbreviated table provided for integers 

N  =  1,2,3,***, 35. (Zero coefficients are indicated by an em pty space.) Uniqueness is 

possibly the subject of another project.

N  Bi b 2 b 3 b 4 N  Bi B2 b 3 B4 N  B 4 B 2 b 3 b 4
1 3 8 21 1 3 8 21 1 3 8 21

1 1 13 2 1 1 24 1 1
2 2 14 2 1 25 1 1 1
3 1 15 1 2 1 26 2 1 1
4 1 1 16 2 * 27 2 1
5 2 1 17 1 2 28 1 2 1
6 2 18 2 2 29 1 1
7 1 2 19 1 2 30 1 1 1
8 1 20 1 1 2 31 2 1
9 1 1 21 1 32 1 1 1
10 2 1 22 1 1 33 1 1 1 1
11 1 1 23 2 1 34 2 1 1 1
12 1 1 1 35 2 1 1

ABBREVIATED MINIMAL REPRESENTATION TABLE FOR
{ B n} : n  = 1,2,3,4,5.

Notice th a t the crucial criterion for the minimal representation in ^  ffiBi (/?,■ =  0,1,2)
i=i

Juxtaposition of 2,2 as successive coefficients in the representation does not occur,

i.e., 2B n +  2 B n+i (n >  2) is necessarily excluded.

This is so because 2B n -f 2B n+i — B n+2 — B n- \  (by (1.1), x = 1), whence

2 B n T  2 B
> B n+2 if n > 2 

=  B n+2 if n = 1 (B 0 = 0, (1.2)),
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whereas 2B n +  2B n+i < B n+2 is required.

Lastly, we comment tha t an analysis of a table for a m axim um  representation of 

positive integers N  by means of the B n reveals a m ixture of some specifically m axim um  

representations and some which coincide with the minimal representations. Reading from 

the Table we see th a t, e.g.,

N Min. rep. Max. rep. Sam e/Different

7 1 2  1 2  Same

8 0 0 1 2 2 Different

This feature of the representations underscores the assertion in Section 1 th a t the B n 

in (1.3) correspond to the MinMax numbers for other sequences, e.g., Pell and Jacobsthal, 

(but are not the  to ta lity  of MinMax numbers in the current situation for Morgan-Voyce 

num bers). Further investigations of these aspects are left to the private entertainm ent of 

the reader ra ther than  to a formal enquiry here.
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