A CURIOUS PROBLEM INVOLVING GEOMETRIC SERIES

Piero Filipponi

Fondazione Ugo Bordoni, Via B. Castiglione 59, I-00142 Rome, Italy e-mail: filippo@fub.it

1. INTRODUCTION

The aim of this note is to extend some results established in [1], [2], [3] and [4] where closed-form expressions were found for the real positive numbers that preserve their fractional parts when raised to certain integral powers. More precisely, after defining

$$S_k(x) := \sum_{r=0}^{\infty} x^{kr}$$
 (1.1)

where 0 < x < 1 is an indeterminate and k is a natural number, we pose ourselves the following problem.

Problem. Characterize the sequence $\{x_n(k)\}$ (n = 1, 2, 3, ...) of all the real *positive* numbers x for which x and $S_k(x)$ have the same fractional part, and find (if any) the closed-form expressions for its terms.

The solution of this problem quite easy. Due to the conditions on x, the series (1.1) converges, and its closed-form expression is

$$S_k(x) = 1/(1-x^k)$$
 $(0 < x < 1)$. (1.2)

Consequently, the numbers $x_n(k)$ must satisfy the equation

$$1/(1-x^k) - x = n (1.3)$$

where n is a natural number. Eqn. (1.3) can be rewritten as

$$x^{k+1} + nx^k - x - n + 1 = 0. ag{1.4}$$

The numbers $x_n(k)$ are given by the positive roots of (1.4), and their closed-form expressions can be found for k = 1, 2 and 3 by using the well-known formulas for the solution of second-, third- and fourth-degree equations. This will be done in Section 2, whereas an extension to negative values of k will be presented in Section 3. Some

particular solutions for k > 3 are also found. The algebraic manipulations involved are not difficult, but some care must be put when one faces the case k = 3.

The results presented in this note might be of interest to high school students and mathematics teachers, and, perhaps, to a wider audience. The reader may enjoy using a PC, or even a 10-digit pocket calculator, to check the correctness of the results from the numerical point of view.

2. CLOSED FORM EXPRESSIONS FOR $x_n(k)$

2.1. k = 1

For k = 1, eqn. (1.4) becomes

$$x^{2} + (n-1)x - n + 1 = 0. (2.1)$$

The positive roots of (2.1) are

$$x_n(1) = \frac{1 - n + \sqrt{n^2 + 2n - 3}}{2} \qquad (n \ge 2).$$
 (2.2)

Remark 1. It can be immediately seen that $x_1(1) = 0$. This solution has to be disregarded as we imposed that x is positive. On the other hand, x = 0 is a root of (1.4) for all k, when n = 1.

As a special case, we have

$$x_2(1) = \alpha - 1$$
 ($\alpha = (1 + \sqrt{5})/2$ the golden section). (2.3)

2.2, k = 2

For k = 2, eqn. (1.4) becomes

$$x^3 + nx^2 - x - n + 1 = 0. (2.4)$$

The positive roots of (2.4) are

$$x_n(2) = \frac{2(n^2 + 3)^{1/2}}{3} \cos\left[\frac{1}{3}\cos^{-1}\frac{-2n^3 + 18n - 27}{2(n^2 + 3)^{3/2}}\right] - \frac{n}{3} \quad (n \ge 1).$$
 (2.5)

Remark 2. The trigonometric expression (2.3) comes from the fact that the discriminant of (2.4) is negative.

As a special case, we have

$$x_1(2) = \alpha - 1 \quad [= x_2(1)].$$
 (2.6)

Proof of (2.6). For n = 1, the l.h.s. of eqn. (2.4) factors as $x(x^2 + x - 1)$. The r.h.s. of (2.6) is the positive root of the above second-degree polynomial.

2.3. k = 3

For
$$k = 3$$
, eqn. (1.4) becomes
 $x^4 + nx^3 - x - n + 1 = 0$. (2.7)

First, let us consider the case n = 1 for which the l.h.s. of eqn. (2.7) factors as $x(x^3 + x^2 - 1)$. The number $x_1(3)$ is the positive root of the above cubic factor. Namely, we get

$$x_1(3) = \sqrt[3]{\frac{25}{54} + \sqrt{\frac{23}{108}}} + \sqrt[3]{\frac{25}{54} - \sqrt{\frac{23}{108}}} - \frac{1}{3}$$
 (2.8)

For $n \ge 2$ in (2.7), we get the positive roots

$$x_n(3) = \frac{-n - \sqrt{n^2 + 4u_n} + \sqrt{2n^2 - 4u_n + 2n\sqrt{n^2 + 4u_n} + 8\sqrt{u_n^2 + 4n - 4}}}{4}, \quad (2.9)$$

where

$$u_n = \sqrt[3]{\frac{-n^3 + n^2 + 1}{2} + \sqrt{D_n}} + \sqrt[3]{\frac{-n^3 + n^2 + 1}{2} - \sqrt{D_n}}$$
 (2.10)

and

$$D_n = \frac{27n^2(n^4 - 2n^3 + n^2 - 14) + 576n - 229}{108} \,. \tag{2.11}$$

It is worth mentioning that u_n is the real root of the cubic

$$x^{3} + (3n - 4)x + n^{3} - n^{2} - 1 = 0 (2.12)$$

associated to the quartic (2.7). As a special case, we have

$$x_2(3) = (-1 + \sqrt{4\alpha + 1})/2$$
 (2.13)

Proof of (2.13). Since the cubic (2.12) is satisfied for n=2 and x=-1, it is plain that $u_2=-1$. Put n=2 and $u_2=-1$ in (2.9) to obtain (2.13).

2.4. k = 4

Since, for k = 4 and n = 1, the l.h.s. of eqn. (1.4) factors as $x(x^4 + x^3 - 1)$, we can find $x_1(4)$ as the positive root of the above quartic factor. Namely, we get

$$x_1(4) = \frac{-1 - \sqrt{4y + 1} + \sqrt{2 - 4y + 2\sqrt{4y + 1} + 8\sqrt{y^2 + 4}}}{4},$$
 (2.14)

where

$$y = \sqrt[3]{-\frac{1}{2} + \sqrt{\frac{283}{108}}} + \sqrt[3]{-\frac{1}{2} - \sqrt{\frac{283}{108}}}.$$
 (2.15)

3. EXTENSION TO NEGATIVE VALUES OF k

By defining

$$S_{-k}(x) := \sum_{r=0}^{\infty} x^{-kr}$$
 (3.1)

the theory developed in Section 2 can be extended to cover negative values of k. If x > 1, then the series (3.1) converges and its closed-form expression is

$$S_{-k}(x) = x^k / (x^k - 1) \quad (x > 1).$$
 (3.2)

Consequently, the numbers $x_n(-k)$ must satisfy the equation

$$x - x^{k} / (x^{k} - 1) = n ag{3.3}$$

where n is a nonnegative integer. Eqn. (3.3) can be rewritten as

$$x^{k+1} - (n+1)x^k - x + n = 0. (3.4)$$

The numbers $x_n(-k)$ (n = 0, 1, 2, ...) are given by the positive roots of (3.4). From (3.3), it can be readily observed that $S_{-k}[x_0(-k)] = x_0(-k)$.

3.1. k = 1

For k = 1, eqn. (3.4) becomes

$$x^2 - (n+2)x + n = 0. ag{3.5}$$

The positive roots of (3.5) are

$$x_n(-1) = \frac{n+2+\sqrt{n^2+4}}{2} . {(3.6)}$$

As special cases, we have

$$x_0(-1) = 2$$
 and $x_1(-1) = \alpha + 1$. (3.7)

3.2. k = 2

For k = 2, eqn. (3.4) becomes

$$x^{3} - (n+1)x^{2} - x + n = 0. (3.8)$$

The positive roots of (3.8) are

$$x_n(-2) = \frac{2(n^2 + 2n + 4)^{1/2}}{3} \cos\left[\frac{1}{3}\cos^{-1}\frac{2n^3 + 6n^2 - 12n + 11}{2(n^2 + 2n + 4)^{3/2}}\right] + \frac{n+1}{3} . \quad (3.9)$$

As a special case, we have

$$x_0(-2) = \alpha$$
 (3.10)

3.3. k = 3

For k = 3, eqn. (3.4) becomes

$$x^{4} - (n+1)x^{3} - x + n = 0. (3.11)$$

First, let us consider the case n = 0 for which the l.h.s. of eqn. (3.11) factors as $x(x^3 - x^2 - 1)$. The number $x_0(-3)$ is the positive root of the above cubic factor. Namely, we get

$$x_0(-3) = \sqrt[3]{\frac{29}{54} + \sqrt{\frac{31}{108}}} + \sqrt[3]{\frac{29}{54} - \sqrt{\frac{31}{108}}} + \frac{1}{3}.$$
 (3.12)

For $n \ge 1$ in (3.11), we get the positive roots

$$x_{n}(-3) = \frac{n+1+Q_{n}+\sqrt{2(n+1)^{2}-4z_{n}+2(n+1)Q_{n}-8\sqrt{z_{n}^{2}-4n}}}{4}$$
(3.13)

where

$$Q_n = \sqrt{(n+1)^2 + 4z_n} , \qquad (3.14)$$

$$z_n = \sqrt[3]{\frac{n^3 + 2n^2 + n + 1}{2} + \sqrt{\Delta_n}} + \sqrt[3]{\frac{n^3 + 2n^2 + n + 1}{2} - \sqrt{\Delta_n}}$$
(3.15)

and

$$\Delta_n = \frac{9n(3n^5 + 12n^4 + 18n^3 + 6n^2 + 27n + 2) + 31}{108}.$$
 (3.16)

3.4. k = 4 and 5

Since, for k = 4 and n = 0, the l.h.s. of eqn. (3.4) factors as $x(x^4 - x^3 - 1)$, we can find $x_0(-4)$ as the positive root of the above quartic factor. Namely, we get

$$x_0(-4) = x_1(4) + (1 + \sqrt{4y + 1})/2 \tag{3.17}$$

where y is defined by (2.15). Moreover, for k = 5 and n = 0, the l.h.s. of eqn. (3.4) factors as $x(x^2 - x + 1)(x^3 - x - 1)$ so that we can find $x_0(-5)$ as the positive root of the above cubic factor. Namely, we get

$$x_0(-5) = \sqrt[3]{\frac{1}{2} + \sqrt{\frac{23}{108}}} + \sqrt[3]{\frac{1}{2} - \sqrt{\frac{23}{108}}}$$
 (3.18)

We do not exclude the possibility that further interesting factorizations can be found.

ACNOWLEDGMENT

This work has been carried out within the framework of an agreement between the Italian PT Administration and the Fondazione Ugo Bordoni.

REFERENCES

- 1. M. Elia & P. Filipponi. "Equations of the Bring-Jerrard Form, the Golden Section, and Square Fibonacci Numbers." *The Fibonacci Quarterly* (to appear).
- 2. M. Elia & P. Filipponi. "Quintics $x^5 5x k$, the Golden Section, and Lucas Numbers." (submitted).
- 3. P. Filipponi."A Curious Property of the Golden Section." *Int. J. Math. Educ. Sci. Technol.* **23**. 5 (1992): 805-8.
- 4. P. Filipponi."Numbers that Preserve Their Fractional Parts when Raised to Negative Powers." (submitted).