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TWO VARIANTS OF THE CONCEPT “LOGARITHMIC PROGRESSION”

K rass i m i r T . Alan a s s o v
Math, Research Lab. - IPACT, P.O.Box 12, Sofia-1113, BULGARIA

We sha 1 1 define two variants of the concept " 1 oganthmic pro­
gression" and siial 1 sliow some of their properties and applicati­
ons. .

Let. everywhere a, b be given real numbers for which a > b > e 
(e is tbe Napier's number) and K be given natural number.

** x
Tbe sequence defined by tbe following scheme 

M (a, b, 0 ) = 1
M ( a, b, R + 1 ) log a, M ( a, b, R ) = 1 o g ( a. M ( a, b, R ) )b b

will be cal 1ed ”a mu 11ip1icative logaritbmic progression”.
Here we shall show some properties of this progression,

x. 1 n bLEMMA 1: For every x > I, for every a > B In b - 1
x" - x > a . log. x .b

P r o o f : O b v i o u s 1y , for every flxed r e a 1 number x > 1 follows tbat
B > 1 and from tbe inequality

e > 1 + y
f or every real number y > 0 (see e. g. [ 1 1 )

'> sx *~r
it follows tba

for every real number Z 1. Then 
x - 1 > In x

for
a

every real 
, a ■

number 
- 1

p > 0 and therefore 
. a - 1X - X - X, (X - 1 ) > x .1 n x - (a - 1 ;m In b .log x

fa - i ) ,
x. I n b 

x. 1 n b - 1 
x. In b 
.In b - 1

■loebK = i ,i o gb

from tbe obvious inequality
bers q > p > i/ 

a> (a - 4 ) . -— -— log x - a. log x. 
THEOREM 1: For every natural number R ;

i \ P “ 1 for every two real num-

1 n a
M (a, b, K) < . 1 n(1og a) a - 1

Pro of: When R - 1, the assertion is valid. Let u
be valid for some R > 1 . Then
M (a, b, K +1 ) = 1 og\ a. M ( aPf , b, R) = 1 o g a + 1x> og, M ( a£>
i 1 } n a -i )0 9 ,..a = x + 1 n a • log X ba ab in a - r In a - 1

11

where x - log, a 1 n ao. a — b 1 n b
it follows that:

> 1 (i, e. 1 n a

. m  b

b) and from Lemma 2

1 n a 1 n a
x . 1 n b , x. 1 n b - 1 In a - 1. log.. X < xk . 1 n b - 1 ' b (log a) In a - 1
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W 1 th which the t21eorem is p r o v e d .
Therefore for every two real numbers a, b (for which a > b > e, 

as it is initially supposed), the sequence M(a, b, K) is increas­
ing and limited. Hence, it lias a least upper bound and let

L M (a , b ) =. 1im M (a , b , k ).
K

T H EOREM_2: For every two real numbers a, b:
1L M {a , b) . LM ( , e) .1 n b 1 n 2:

P r o o f : I n 1 1 i a 11 y , w e s li all s li o w that for ever y k
i a

1 :

1 n . M (m  b-, e , k ) = M (a , b , k )

When k - 1:
1 M ( a e, 1 ) 1 a. 1 n 1 o g, aIn b In b ’ ' ' In b ’ In 1

Let us assume that (2) be valid for some k
1

7— . M (T ~ , e, k +1 )1 n b 1 n b
= log r— ^ . M f — V.b 1 n b 1 n b
(by a s s ump 1. 1 o n )

:i b ‘
, a a1 n ----- . M ( -----,1 n b 1 n b

, k)

log a ,M (a , b , k ) - M (a , b , k +1).~ b
The validity of (1) follows from:

t M /In b 

- 1 im

In b 
1

1 n b
1 , . , a. 1 1 m  M i

k-xo In b
if

1 n b . In M(' in , e , k )
k-x»

(from (2))
-- lira M ( a , b , k ) - LM ( a , b )

k-)oo

M ( a, b, 1) 
: 1 , T h e n : 
e , k )

( l )

(2)

The sequences defined by the following schemes 
A (a, b, O) = 0
A (a, b, k+1) = log a + A (a, b, k) a log (a + A (a, b, k) )b b

will be called" an "additive logarithmic progression".
By analogy with Theorem 1, the following asserion is proved, 

THEOREM _3: For every natural number k:
a . In bA ( a , b , k ) < — . f o g1 r.a. In b

Proof: When k - 0. the assertion is obvious. Let k > 0 be a fixed 
natural number. Then by assumption

a , In bA (a, b, k+1 ) -•
(from Lemma 1) 

a . 1 n b

og + a  (a, b, k) o gb a . 1 n b — 1 o g a ; 1 b

"gb a 'a . 1 n b - l
Therefore for every two real numbers a, b the sequence A(a, b, 

k) is increasing and limited. Hence, it has a least upper bound 
and let

L A (a , b ) = lim A (a , b , k ) . 
k-XD

THEOREM 4: For every two real numbers a, b:

n d
y ■ LA(a, e).LA (a , b ) (3)
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P r o o f : Initially, we shall show that for every k > 1:
- . A { a , e , k ) - A {a , b , k }I n id

When k - 1 the assertion is eke eked directly* Let k > i. Then
I . . .  1 1

(4 )

1 n b ’ A (a , e , k 1 1 ) = In b' In (a
(by as;m m p t  i o n )
~ log a i A ( a, e , k ) - A (a , e

The validity of (3) to 1 1 ows

1 n b A f a e, K)>

In b .L A (a , e ) 1 n b . 1 1 m A ( a , e, k )
K-Ko

(from (4))
- 11 m A { a , b , k ) LA ( a , b ) .

k-xo

1 im
k-xo lr— -. A ( a, b , k )

Finally, we siial 1 note two applications of both pro g r e s s i o n s . 
For this aim we shall represent the solution of the equation

0 — 0
in the above forms. It can directly be seen, that it is

{ 5}

M e + e ■ e + e e i e
}- In(e + 1n (e i 1n f e + .

= 1.420 37 01 1802 008 3. . .
(calculated by a computer) and for it the following assertion is 
v a 1 1 d ,
LEMMA 3: p is a transcendental number.
Proof: Let us assume, that p be an algebraical number. But (1) can 
be w m t e n  in the form

p „ 1 01, e - 1. e - p . e - 0,
where all coeffitients and exponent sings are algebraical numbers 
and from L m d e m a n n ’s theorem (see e.g. [2, 3}) we reach a co n t r a ­
il i ction.

From above we see that p = L A (e , e).
On the other hand
L M (e , e ) - 1n e . 1n e , In e . . , - 1 + I n l n e . l n e . . .
- 1 + In 1 + In In 1.1n e ... - 1 + L A (e , e ),

p - L M (e , e ) - 1.
By analogy, the solution of the equation

b - a , x
is x - LM(a, b) and the solution of the equation

P A = q. x + r
r / qi s x - LM (p , q, p )
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