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Here we shall continue the research from [1] and [2], Initial-
ly, we shall note that the first three part of this series are co-
Ilected in [!}. Paper [21 is their fourth part (in the title of
[2] there is a misprint - there the symbol “y'" must be read MyM).

The basis of our research below are the three well-Known arith-
metic functions vy, o and y, which have the following forms (see,

e.g, [3.4). a
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i.e. after applying of the substitution - over n, y(n), Y{n)



and a(n) we obtain the one and the same results - an expression
which corresponds to the function 0(n),

We must accentuate that this substitution is only a formal pro-
cedure and it is not mathematically correct.

Obv iously, Dedekind2s function is a modificat.ion of Euler'-’s
funclion y, The question for the modifications of a function is
interesling too.

Here we shall deiine three funclions, every one of which is a
modificalion of o function They are the followmg
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Obviously, we can put
o] nh) = a{n}.

We must note, that the above modificallons are made over the
formal record of a function. The new functions do not have any of
the good properties of a functions. For example, they are not in-
teger ones. Their domain is +v-e set of the natural numbers, but
t.heir range 1is the set of the rational numbers. We can transform

these funcllons to integer ones, using as a multipi ier one of t.he
following two functions:
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which are analogous of the function mult(n)
this case, the functions
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are already integer functions, Pracllcally, funcllon mull {n)
+
me ides with function y(n) from [3],

They have also the fol lowing forms:
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i.e, a and a come ,de.

Bel ow, we shal1ll discuss the hasic pr
pes of funetions, From the definitions,
the to lowing asserfioris aie valid i1for

alt’ atove form.
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where the sigh ”+” denotes that the index of the new

type of o-timelion can he as as well as "-"
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Theorem 6: y(h) <o M) <n <y@©) <o) < o+ _(n)
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Theorem 8: a1l new deiined funet ions are mullipliealive ones<
Final 1y, we shal 1 note that all new defined functions can be
generalized, in the sense of [7-9].
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