NNTDM 2 (1996) 4, 41-48 THE NUMBERS WHICH CANNOT BE VALUES OF EULER'S FUNCTION φ Mladen Vassilev - Missana

5, Victor Hugo Str., Sofia-1124, BULGARIA

In this paper we shall describe all elements of the set of these natural numbers which cannot be values of the Euler's function ψ (see e.g. [1]).

Initially, we shall give some definitions. Let

$$A = 2^{g} \cdot \prod_{i=1}^{g} q^{i}, \qquad (1)$$

where g, r, β_1 , β_2 , ..., $\beta_r \ge 1$ are natural numbers and $2 < q_1 < q_2 < ...$ $< q_r$ are prime numbers. Let k: {1, 2, ..., r} -> {1, 2, ..., r} be a permutation function.

Definition 1: The h-tuple Q = $\langle q \rangle$, $q \rangle$, \ldots , $q \rangle$, where $1 \leq h \leq r$, will be called a real-component (R-component) of A iff

$$\frac{h}{\prod_{i=1}^{n}} (q_{k(j)} - i) = 2^{\gamma} \cdot \prod_{j=1}^{r} q_{j}^{\gamma},$$
(2)

where $1 \le \gamma \le g$ and $0 \le r \le \beta$ for $1 \le j \le r$. Definition 2: The h-tuple Q = $\langle q_{K(1)}, q_{K(2)}, \ldots, q_{K(h)} \rangle$, where $1 \le h$ $\le r$, will be called a solvable R-component (SR-component) of A iff

$$\frac{h}{\prod_{j=1}^{n} (q - 1) = n.2^{\gamma} \cdot \frac{h}{\prod_{j=1}^{n} q} \frac{K(j)}{K(j)},$$
(3)

where

$$\mathbf{n} = \prod_{j=1}^{r} \mathbf{q}_{j}^{j} / \prod_{j=1}^{h} \mathbf{q}_{k(j)}^{k(j)}$$
(4)

and $1 \leq \gamma \leq 1$ and $0 \leq \Gamma \leq \beta$ for $1 \leq j \leq h$. K(j) = K(j)

Obviously, every SR-component of A is a R-component of A, too.

The validity of the following assertion follows from (2) and (3). LEMMA 1. Let $q_{k(1)} < q_{k(2)} < \ldots < q_{k(h)}$, where $1 \le h \le r$. The necessary condition $Q = \langle q_{k(1)}, q_{k(2)}, \ldots, q_{k(h)} \rangle$ to be a SR-component of A is the following: at least one number $\gamma_{k(j)}$ for some $j \in \{1, 2, \ldots, h\}$ to be equal to 0. Definition 3: The s-tuple $P = \langle p_1, p_2, \ldots, p_s \rangle$, where $s \ge 1$ is a natural number and $2 < p_1 < p_2 < \ldots < p_s$ are prime numbers will be called a solvable imaginary component (SI-component) of A iff

$$A = \prod_{i=1}^{S} (p - i).$$
 (5)

Let A have the form from (1) and let

$$A = \prod_{i=1}^{t} A_{i}, \qquad (6)$$

where

$$A_{i} = 2^{j} \cdot \prod_{j=1}^{n} q_{i,j}^{j}, \qquad (7)$$

(8)

g, n \geq 1 and β \geq 0 for every i (1 \leq i \leq t) are natural numbers

- 42 -

and 2 < q < q < ... < q are prime numbers. 1, i = i, 2 = ... < 1, n

LEMMA 2: The necessary and sufficient condition for that the number A does not have a SI-component is the following: in every factorization of A in the form (6), at least one of the numbers A + 1 for $1 \le i \le t$ to be a composite number.

The proof is obvious.

Below we shall discuss the question related to the solutions of

$$\varphi(\mathbf{x}) \equiv \mathbf{A},$$

where A is an arbitrary natural number. For A = 1 we have $\varphi(1) = \varphi(2)$ = 1, so x = 1 and x = 2 satisfy (8). If A > 1 is an odd number, then Euler's formula for φ (see e.g. [1]) shows that (8) does not have solutions. If A = 2^g (g > 0), then (8) is satisfied at least for x = 2^{g+1} . It remains only the case when A $\neq 2^m$ for every natural number m, but A is an even number. Then A is given by (1). The following theorem solved this case completely. THEOREM 1: Let A be given by (1). The equation (8) does not have solutions iff the following three conditions are valid simultaneously:

(a) A does not have a SR-component;

(b) if $Q = \langle q \\ k(1) \rangle$, $q \\ k(2) \rangle$ is a SR-component of A (see Def.

2) and if μ , n and z are natural numbers for which: $1 \le \mu \le K(j)$

$$g - \gamma, \quad n^* = \frac{\prod_{j=1}^{\beta-1} j}{\prod_{j=1}^{j} j} \frac{\frac{\beta}{j} j}{j} \frac{\frac{\beta}{m}}{\prod_{j=1}^{K(j)} K(j)} \frac{\beta}{k(j)} \frac{\beta}{k(j)}$$

 $(i \leq j \leq h)$, then the number $A \equiv A (p, z, j, z_{k(1)}, z_{k(2)}, \dots, z_{k(h)}) =$ $2^{p} \cdot \prod_{j=1}^{k} q_{k(j)} \cdot n^{*}$ does not have a SI-component;

(c_1) for every μ which satisfies the inequality $1 \leq \mu \leq 1,$ the number β

$$A_{2} \equiv A_{2}(\mu) = 2^{\mu} \cdot \prod_{j=1}^{r} q^{-j} \text{ does not have a SI-component.}$$

Proof: Let Q be a SR-component of A. Let $x = 2 \frac{g - \gamma + i}{j = 1} \frac{h}{K(j)} \frac{K(j)}{K(j)}$

From (3) and (4) it follows that (8) is valid. Therefore condition (a_4) is a necessary one for the theorem.

Let Q be a R-component of A and let $P = \langle p_1, p_2, \dots, p_t \rangle$ be a SIcomponent of $A_i = 2^{\mu} \cdot \prod_{j=1}^{n} q_{k(j)}^{Z} \cdot n^*$ from (b_i). Then from (5) it follows that $\prod_{j=1}^{S} (p_j - 1) = 2^{\mu} \cdot n^* \cdot \prod_{j=1}^{H} q_{k(j)}^Z$, from where

$$2^{g-\gamma-\mu} \cdot \prod_{j=1}^{h} (q_{K(j)} - 1) \cdot q_{K(j)}^{\beta-1} \cdot (j) - \sum_{k=1}^{k} (j) - \sum_{i=1}^{k} (j) \cdot \sum_{i=1}^{k} (p_{i-1}) = A$$

- 43 -

because Q is a R-component of A.

Now it is easy to verify directly that the number x given by

$$\mathbf{x} = 2 \frac{\mathbf{g} - \mathbf{\gamma} - \mathbf{\mu} + \mathbf{i}}{\mathbf{j} = \mathbf{i}} \cdot \frac{\mathbf{B}}{\mathbf{K}(\mathbf{j})} \cdot \frac{-\mathbf{Z}}{\mathbf{K}(\mathbf{j})} \cdot \frac{+\mathbf{i}}{\mathbf{K}(\mathbf{j})} \cdot \frac{\mathbf{S}}{\mathbf{I}}}{\mathbf{i} = \mathbf{i}} \cdot \frac{\mathbf{p}}{\mathbf{i}}$$

is a solution of (8). Therefore condition (b) is a necessary one for the above theorem, too. 1

Let $P = \langle p_1, p_2, \dots, p_t \rangle$ be a SI-component of A. Then

$$2^{g-\mu} \cdot \prod_{j=1}^{g} (p_j - 1) = 2^g \cdot \prod_{j=1}^{r} q_j^{j} = A$$

We set $x = 2^{g-p+1}$. If p_j and see that x is a solution of (8), i.e. condition (c₁) is also a necessary one for the theorem. Therefore the three above conditions are simultaneously necessary.

Let (8) have a solution x and let x have the form $x = 2^{\alpha}$. If $p_{j=1}^{\alpha}$, where $\alpha_{0} \ge 1$, because $\varphi(2x) = \varphi(x)$ if x is an odd number.

Therefore

There are two possibilities for p_1 and q_j , where $1 \le i \le s$ and $i \le j \le r$. The first case is: $p_1 \ne q_j$ for every i and for every j satisfying the above inequalities. From (9) it follows that $\alpha_1 = 1$ for every i (1 \le i \le s). Then the equality $A_2(\mu) = \prod_{i=1}^{S} (p_i - 1) = A_2$ is valid for some μ (1 \le \mu \le g). Hence $P = \langle p_1, p_2, \ldots, p_1 \rangle$ is a SI-component of A_2 . The second case is: $p_j = q_{K(j)}$ for every j (1 \le j \le h) and h \le j. There are two subcases: h = s and h < s.

Let h = s. From $i \leq h \leq r$ we obtain

$$2 - \frac{\alpha}{j=1} - \frac{\alpha}{K(j)} - \frac{1}{K(j)} - \frac{1}{K(j)} = A.$$
 (10)

From the obvious inequalities $\alpha = 1 \leq \beta$ for $1 \leq j \leq h$ and k(j) = k(j)

from (10) we obtain $\prod_{j=1}^{h} (q_{k(j)} - i) = 2^{\gamma} \cdot n \cdot \prod_{j=1}^{h} q_{k(j)}^{(k(j)}$ (cf. (4)), where $\gamma = g - \alpha_{0} + i$, $f_{k(j)} = \beta_{k(j)} - \alpha_{k(j)} + i$, for $i \leq j \leq h$. Therefore

 $P = \langle p_1, p_2, \dots, p_S \rangle$ be a SR-component of A.

Let $h \leq s$ be the greatest number for which p = q for every $j = (1 \leq j \leq h)$. Then

$$= 2 \frac{\alpha_0^{-1}}{2} \cdot \frac{h}{\prod_{j=1}^{m} q_{k(j)}} \frac{\alpha_{k(j)}^{-1}}{p_{k(j)}} \cdot (q_{k(j)} - 1) \cdot \frac{g}{\prod_{j=h+1}^{m} p_{j}} \frac{\alpha_1^{-1}}{p_{j}} \cdot (p_j - 1) = A, \quad (11)$$

where it is necessary to be valid that $0 \le \alpha = 1 \le \beta$ for $1 \le j$ $\le h$ and $\alpha = 1$ for $h + 1 \le i \le s$. On the other hand, A has the form (1) too. From (11) it follows that:

$$\sum_{\substack{i=h+i \ j=1}^{n}}^{s} (p_{i} - i) = \frac{2 \frac{g - \alpha_{0} + i}{2} \cdot \frac{h}{\prod} q_{k(j)}^{\beta} q_{k(j)} - \alpha_{k(j)} + i}{j_{j=1} q_{k(j)}^{\beta} \cdot \frac{j_{j=1} - q_{j}}{j_{j=1} q_{j}}} \cdot \frac{p_{j=1} - q_{j}}{j_{j=1} q_{j}} \cdot (12)$$

We rewrite (12) in the form:

$$\frac{h}{\prod_{j=1}^{n} (q_{k(j)} - 1)} = \frac{2 \frac{g - \alpha_0 + 1}{j = 1} \frac{h}{q_{k(j)}} \frac{\beta_{k(j)} - \alpha_{k(j)} + 1}{j = 1} \frac{g_{k(j)}}{j = 1} \frac{\beta_{k(j)}}{k(j)}}{\prod_{j=n+1}^{n} q_{k(j)}} - \frac{g_{k(j)}}{j = 1} + 1}{\prod_{j=n+1}^{n} (p_j - 1)} - \frac{g_{k(j)}}{j = 1} + 1}{\sum_{j=n+1}^{n} (p_j - 1)} - \frac{g_{k(j)}}{j = 1} + 1}{\sum_{j=n+1}^{n} (p_j - 1)} - \frac{g_{k(j)}}{j = 1} + 1}{\sum_{j=n+1}^{n} (p_j - 1)} - \frac{g_{k(j)}}{j = 1} + 1}{\sum_{j=n+1}^{n} (p_j - 1)} - \frac{g_{k(j)}}{j = 1} + 1}{\sum_{j=n+1}^{n} (p_j - 1)} - \frac{g_{k(j)}}{j = 1} + 1}{\sum_{j=n+1}^{n} (p_j - 1)} - \frac{g_{k(j)}}{j = 1} + 1}{\sum_{j=n+1}^{n} (p_j - 1)} - \frac{g_{k(j)}}{j = 1} + 1} + \frac{g_{k(j)}}{j = 1} - \frac{g_{k(j)}}{j = 1} + \frac{g_{k(j)}}{j = 1} - \frac{g_{k($$

The denominator of the right-hand side of the above equality is a divisor of A and it does not have prime divisors different from 2 and q, for $1 \le j \le r$, because of (9). So the last equality means that Q

$$= \langle q_{k(1)}, q_{k(2)}, \dots, q_{k(h)} \rangle \text{ is a } R-\text{component of } A. \text{ Therefore}$$

$$\stackrel{h}{\underset{j=1}{\overset{H}{\underset{k(j)}{}}} (q_{k(j)} - 1) = 2^{\gamma} \cdot \prod_{j=1}^{r} q_{j}^{\uparrow}, \qquad (13)$$

where $1 \le \gamma \le g - \alpha_0 + 1$, $0 \le \Gamma_j \le \beta_j$ ($1 \le j \le r$). From (12) and (13) directly it follows

where

$$n_{1}^{*} = \frac{\prod_{\substack{j=1 \ j \\ j=1 \ j}}^{R} q_{j}^{-\Gamma} j}{\prod_{\substack{j=1 \ j \\ j=1 \ K(j)}}^{R} \kappa(j)^{-\Gamma} \kappa(j)}$$

Using that $i \leq g - \alpha_0 - r + i \leq g - r$ and $0 \leq \beta_{K(j)} - \alpha_{K(j)} - \Gamma_{K(j)}$ + $i \leq \beta_{K(j)} - \Gamma_{K(j)}$, we set $\mu = g - \alpha_0 + r + i$, $z_{K(j)} = \beta_{K(j)} - \alpha_{K(j)}$ - $\Gamma_{K(j)} + i$ for every j ($i \leq j \leq h$) and note the right-hand side of (14) by $A_i = A_i(\mu, z_{K(1)}, \dots, z_{K(h)})$. Then from (14) we obtain that $P = \langle p_{h+i}, p_{h+2}, \dots, p_s \rangle$ is a SI-component of A_i .

Therefore, the simultaneous validity of conditions $\begin{pmatrix} a \\ i \end{pmatrix}$, $\begin{pmatrix} b \\ i \end{pmatrix}$ and $\begin{pmatrix} c \\ i \end{pmatrix}$ is a sufficient condition for the fact that the equation (8) does not have a solution. With this the theorem is proved. \$\neq 2^n\$, for every natural number n), which are not values of \$\varphi\$-function. It is the following:
1. Check of condition (c₁) with the help of Lemma 2.
2. Construct the set Q of all R-components of A.
3. Construct the set Q - Q₁, where Q₁ is the set of all SR-components of A.
4. Check of condition (b₁) for the R-components of A belong to set Q - Q₁.
The number s will be called an order of a component (R- or SI-) P = P₁, P₂, ..., p₂. The following assertion is obvious.
LEMMA 3: Every R-component of A from order r is a SR-component of A.

The R-components which are not SR-components of A we shall call a unsolvable R-components (UR-components) of A.

The following assertion is related to the necessity for separating of Q and Q. Its validity follows from the above lemma.

LEMMA 4: A R-component $Q = \langle q \\ K(1) \rangle \langle K(2) \rangle \rangle \langle K(h) \rangle$ of A is a UR-component of A iff the following conditions are valid simultaneously: (a) $1 \leq h \leq r$,

(b) There is $j \in \{1, 2, ..., r\} - \{k(1), k(2), ..., k(h)\}$ such that the prime q_j, from the factorization of primes for $B = \prod_{j=1}^{h} (q_{k(j)} - 1)$, has a multiplicity different to B_j.

Below we shall show some applications of Theorem 1.

In (1) we replace g = 1. Then $\gamma = 1$ and from the inequality $1 \le h \le \gamma$ it follows that h = 1. The SR-components can be only of the form Q = q ($1 \le j \le r$). If Q = q is a SR-component, we obtain from (3):

 $q_{1_{O}} = 1 = 2, q_{j_{O}}, \frac{j_{O}-1}{j_{=1}} = \frac{B_{j}}{q_{j}}, \frac{B_{j}}{j_{=1}} = \frac{B_{j}}{q_{j}}, \frac{B_{j}}{j_{=1}} = \frac{B_{j}}{q_{j}}.$ (15)

Let $r \ge 2$. When $j_0 < r$, the equality (15) is obviously impossible. When $j_0 = r$, we put the restrictions $q_r \ne \frac{A}{\beta_r} + 1$ and the number A + 1 q_r

is a composite one. Then A does not have SR- and SI- components. As a corollary of Theorem 1 it follows

THEOREM 2: When the number A is given by (i), g = 1 and $r \ge 2$, then the equation (8) does not have solutions iff the following two conditions are valid simultaneously:

 $(a_2) q_r \neq \frac{A}{B_r} + 1;$ q_r

45 -

Theorem 1 gives an algorithm for checking of all even numbers A (A

 (b_p) The number A + 1 is a composite one.

Let r = 1. Then $A = 2.q_1^{B_1}$ and A does not have a SR-component iff q_1 > 3. Obviously, A does not have a SI-component iff A + 1 is a composite number (see Lemma 2). As corollary of Theorem i it follows also THEOREM 3: If number A = 2.q, where $q \ge 3$ is a prime number and $\beta \ge 1$ is a natural number, then the equation (8) does not have solutions iff the following two conditions are valid simultaneously: $(a_{2}) q > 3$

 (b_3) The number A + i is a composite one.

COROLLARY 1: If q > 2 is a prime number such that number 2, q + 1 is a composite one then the equation (8) does not have solutions for A = 2q. COROLLARY 2: Let a and b be natural numbers for which (a, b) = 1, (a, b) = 12.b + 1 > 1. If q is a prime number which belongs to the sequence (b+ k.a / k \in N}, then the equation (8) does not have solutions when A = 2.q. Particularly, if q is a prime number from the sequence {6.k + 1 / $k \in N$, then the equation (8) does not have solutions for A = 2.q.

COROLLARY 3: If A = 2.m, where m = 6.K + 1 (K \in N) and m = q $(\beta \geq 1)$ and q is odd prime number, then (8) does not have solutions. COROLLARY 4: If A = 2.m, where m = 6.k + i ($k \in N$) and both conditions $r \geq 2$ and β_r is an even number are simultaneously valid (see (1)) then the equation (8) does not have solution.

Proof: From $m \equiv 1 \pmod{3}$ and $q_r^{\beta_r} \equiv 1 \pmod{3}$ we obtain that $\frac{A}{\beta_r} + 1 \equiv$

0 (mod 3), hence the equality $q_r = \frac{A}{B_r} + 1$ is impossible. Then the va-

lidity of the assertion follows from Theorem 2.

Up to here we researched the case g = 1. For the case g > 1 we must give some definitions.

It is known (see e.g. [2]) that the prime numbers of the form F_{t} = 22

+ 1 (t \in N) are called Fermat's prime numbers.

Let $\beta \ge 0$, $g \ge 1$, q > 2 and q be a prime number.

Definition 4: We shall call that the couple $\langle g_i, \partial_i \rangle$, where $i \leq i \leq t$ and t \geq 1 generates a Fermat's chain about the couple $\langle g, \beta \rangle$ iif the following two conditions are valid simultaneously:

a') $g_{i} \geq 1$, $\partial_{i} \geq 0$ for i = 1, 2, ..., t;

b') $\sum_{i=1}^{t} g_i = g, \sum_{i=1}^{t} \partial_i = \beta$ and numbers $2^{i}, q^{i} + 1$ ($1 \le i \le t$) are prime ones.

We must note that the idea for this definition was generated from

LLF.

the case when $\beta = 0$, because in this case numbers $2^{\frac{\beta}{1}} + 1$ (1 $\leq i \leq t$) are Fermat's prime numbers. The numbers g_{i} (1 \leq 1 \leq t) can be called Fermat's chain about g. THEOREM 4: Let $g \ge 1$, $\beta \ge 1$ and q > 2 be a prime number. The equation (8) does not have solutions for $A = 2^{g} \cdot q^{\beta}$ iff the following two conditions are valid simultaneously: $(a_n) q \neq 2^{\partial} + 1 \text{ for } 1 \leq \partial \leq g,$ (b) The numbers $2^{\mu}, q^{\beta} + 1$ ($1 \le \mu \le g$) are composite ones, (c_1) For every μ (1 $\leq \mu \leq g$) there is not Fermat's chain $\langle g_i, \partial_i \rangle$ for which $\partial_{i} < \beta$ (1 \leq i \leq t) about the couple $\langle \mu, \beta \rangle$. The proof follows from Theorem 1. COROLLARY 5: Let q be a prime number and $q \neq 2^{\hat{0}} + 1$ (1 $\leq \hat{0} \leq \hat{g}$). Ιf numbers $2^{\mu}, q^{\nu} + 1$ ($1 \le \gamma \le \beta$, $1 \le \mu \le g$) are all composite, then (8) does not have solutions when $A = 2^{g}, q^{\beta}$. COROLLARY 6: Let $g \ge 1$ and q be a prime number. The equation (8) does not have a solution for $A = 2^g$, q iff numbers 2, q + 1, 2^2 , q + 1, ..., 2^{g} , q + 1 are composite and simultaneously with this, q is not a Fermat's prime number of the form 2^{μ} + 1 for $1 \leq \mu \leq g$. Proof: The validity of the assertion follows directly from Theorem 4 after the substitution $\beta = 1$, because the condition (c₀) is satisfied. The Dirichlet's theorem for the prime numbers' distribution in an arithmetic progression (see e.g. [3]) in combination with Corollary 2 gives the conclusion that there are infinitely many even numbers A for which the equation (8) does not have a solution, when g = 1. The analogical assertion for the case with an arbitrary number $g \ge 1$ follows from the next THEOREM 6: If $f(T) = \begin{pmatrix} 5 \\ 1 = 0 \end{pmatrix}, T + \frac{490}{641}, \begin{pmatrix} 5 \\ 1 = 0 \end{pmatrix} + 1$ is a prime number, then the equality $\varphi(\mathbf{x}) = 2^{\mathbf{g}}$, $f(\mathbf{T})$ does not have a solution. Proof: Euler has shown that $F_{E} \equiv 0 \pmod{641}$ (see e.g. [2]). Therefore, the sequence $\{f(T) / T \in N\}$, which is an arithmetic progression, contains only natural numbers. From Dirichlet's theorem (see e.g. [3]) in this sequence there are an infinite number of prime numbers. Let f(T)be a fixed prime number. The equality f(T) = F for a some $n \ge 0$ generates the congruence $2^{2^n} \equiv 0 \pmod{F_0}$ which is impossible. Therefore f(T) is not Fermat's prime number. Below we shall show that numbers $B = 2^{\mu}$. f(T) + 1 are composite for

 $1 \le \mu \le g$. When μ has the forms $\mu = 4.k + 1$ or $\mu = 4.k + 3$ for some number k,

- 47 -

- 48 -

the validity of the assertion follows from congruences

$$B_{\mu} = 2^{4. \text{ K}+1} \cdot f(T) + 1 \equiv 0 \pmod{F_0},$$

$$B_{\mu} = 2^{4. \text{ K}+3} \cdot f(T) + 1 \equiv 0 \pmod{F_0},$$

which are valid. When p = 4. k + 2 we obtain:

$$B_{\mu} = 2^{4 \cdot K + 2} \cdot f(T) + 1 \equiv O(mod F_{1}),$$

1.e., B is a composite number, too. The fourth (the last) case is $\mu = \frac{1}{\mu}$ 4.k. Let k = m is an odd number. It is easily checked that

$$B_{ij} = 2^{4} \cdot M, f(T) + 1 \equiv O(mod F_{2}),$$

i.e. B is a composite. Let k=2,m, where m is an odd number. Now, it μ

is checked that

$$B_{\mu} = 2^{8.m}$$
, $f(T) + 1 = 0 \pmod{F_3}$.

Let k = 4.m, where m is an odd number. Then

$$B_{\mu} = 2^{10.m}, f(T) + 1 \equiv 0 \pmod{F_{\mu}}.$$

Finally, let K = 8.m. When m is an odd number, it is checked that

 $B_{\mu} = 2^{32.m}$ f(T) + 1 = 0 (mod F₅/641),

and when m is an even number, then

 $B_{ij} = 2^{32.m} f(T) + 1 \equiv O \pmod{641},$

i.e., B_{μ} is also composite. For k there are no other possibilities and hence numbers B_{μ} (1 $\leq \mu \leq 1$) are always composite. Therefore, for the numbers $A = 2^{4}$ f(T) are valid all conditions from Corollary 6, i.e.,

the theorem is proved. In the following Table we give the first ten primes from set $\{f(T) / T \in N\}$, which Stojan Mihov calculated by computer:

T	± (T)	Т	f(T)
30	56703577431438935801	194	3592769605519805400661
38	71507753002111538721	232	4293745880320768362031
112	2080136591475622168231	250	4625787273647540291101
128	2375284496654974994071	264	4884041690679474013711
186	3445195652930128987741	334	6175313775839142626761

The paper is based on [4].

REFERENCES:

- Nagell T., Introduction to number theory, John Wiley & Sons, New York, 1950.
- [2] Vasilev M., The numbers which cannot be values of Euler's function y, Preprint MRL-2-92, Sofia, 1992.
- [3] Dirichlet P.G. L., Dedekind R., Vorlesungen über Zahlentheorie, Chelsea, New York, 1968.
- [4] Vassilev M., The numbers which cannot be values of Euler's function φ, Preprint MRL-2-92, Sofia, 1992.

Received in BNT in June 1993