NNTDM 2 (1996) 4, 14-17

ON ONE GENERALIZATION OF THE FIBONACCI SEQUENCE Part VI: SOME OTHER EXAMPLES

Peter G. Georgiev and Krassimir T. Atanassov

* Dept. of Physics, VMEI, Varna 9010, BULGARIA

Math. Research Lab., P.O.Box 12, Sofia-1113, BULGARIA

The paper is the next part of our series related to application of matrix methods in the research on the Fibonacci sequences (see [1-5]). Here we shall use without definitions the notations introduced there and we shall give, new examples.

Let the Fibobacci sequence be given in the form:

$$X_{n+1} = A, X_n \quad (n = 0, 1, 2, ...),$$
 (1)

where X is (M x 1)-matrix and A is a (M x M)-matrix.

THEOREM 1: If all eigenvalues μ_1 , μ_2 , ..., μ_M of A are different, then there exists a sequence with complex numbers u_0 , u_1 ,..., each member of which is dependent on A (but independent of X_0) and complex (M x 1)-matrices Q_0 , Q_1 ,..., Q_{M-1} dependent on A and X_0 with the following property:

If A is regular one (2) is valid for negative integers n, too.

Proof: Let us put:

$$u = \sum_{n=1}^{M} C_{n} \mu_{n}$$
 (n = 0, 1, ...)

where C_1 , C_2 ,..., C_M are arbitrary complex numbers and all they are \neq 0.

Directly it can be checked that (2) is valid for $0 \le n \le M-1$. Let the characteristic equation $\det(A-\mu,E)=0$ have the form:

$$\begin{array}{cccc}
M & M-1 & S \\
\mu & = & \sum & p & \mu & ,\\
S = 0 & S
\end{array}$$

where p_0 , p_1 ,..., p_{M-1} are real (complex) numbers, if A is a real (complex) matrix. Then for every natural number n:

$$\begin{array}{ccc}
n+M & M-1 & n+s \\
\mu & = \sum_{s=0}^{\infty} p_s, \mu_s
\end{array}$$

from where

$$X = \sum_{n+M} \frac{M-1}{s=0} p. X$$

(cf. Theorem 2 [4])).

Let Q_0 , Q_1 ,..., Q_{M-1} be determined such that (2) is valid for X $(n=0,\ 1,\ \ldots,\ M-1)$. Using the method of the induction, we shall show that (2) is valid for all other $n\geq M$.

From (2) we obtain:

with which the assertion is proved for n+1.

EXAMPLE 1: The Fibonacci sequence $\alpha = \alpha + \alpha$ can be represented in the form:

$$\begin{bmatrix} \alpha \\ n+1 \\ \alpha \\ n+2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha \\ n \\ \alpha \\ n+1 \end{bmatrix}.$$

Here $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $det(A - \mu.E) = 0$ has the form:

$$\mu^{2} - \mu - 1 = 0,$$
from where $\mu_{1} = (1 + \sqrt{5})/2$, $\mu_{2} = (1 - \sqrt{5})/2$, $\mu_{1}, \mu_{2} = -1$.

In the particular case $(F = \alpha, F = 0, F = 1)$:

$$F_n = (\mu_1^n - \mu_2^n) / \sqrt{5}$$
 and $F_{n-1} = (\mu_1^{-1}, \mu_1^n - \mu_2^{-1}, \mu_2^n) / \sqrt{5}$,

from where

$$p_{1}^{n} = ((1 + \sqrt{5})/2)^{n} = -((1 - \sqrt{5})/2)^{-1}, F_{n} + F_{n-1}$$

$$p_{2}^{n} = ((1 - \sqrt{5})/2)^{n} = -((1 + \sqrt{5})/2)^{-1}, F_{n} + F_{n-1}$$

Let the initial conditions are $X_0 = \begin{bmatrix} a \\ b \end{bmatrix}$. Then

$$X_n = \begin{bmatrix} b \\ a+b \end{bmatrix}, F_n + \begin{bmatrix} a \\ b \end{bmatrix}, F_{n-1}$$

Let the (1) be given as above. Let B' and B' be fixed complex (M x 1)-matrices and let $\Phi_{\bf k}$ (n) be complex (M x 1)-matrices for 1

 \leq k \leq s, which represent periodical functions of n. Let μ_1 , μ_2 , ..., μ_{M} be the eigenvalues of A, and let F be the ordinary Fibonacci numbers.

THEOREM 2: For every natural number n:

$$X = F$$
 $B' + F$ $B' + \sum_{k=1}^{r} \Phi(n),$ (3)

where m_1 and m_2 are some constants, if and only $\mu_{1,2} = (1 \pm \sqrt{5})/2$ and all other eigenvalues of A μ_{K} have the form: $\mu = \exp(i.\alpha_{k})$, where α_{k} are different real numbers and $i = \sqrt{-i}$; and eventually, $\mu_{M} = 0$.

Moreover, (3) can be represented in the form:

$$X = F \cdot B + F \cdot B + \sum_{n=1}^{S} (C \cdot \cos(\alpha \cdot n) + D \cdot \sin(\alpha \cdot n)), \quad (4)$$

$$\text{where } B_1, B_2, C_k, D_k \quad (1 \le k \le s) \text{ are fixed } (M \times 1) \text{-matrices.}$$

We shall denote that in the assertion (3) and (4) must be valid for arbitrary initial values of X. If X has a fixed initial value, then the necessary and sufficient condition (3) and (4) to be valid for any initial value of X is that $\mu_{1,2} = (1 \pm \sqrt{5})/2$ to be among the eigenvalues of A.

The proof of the last theorem it follows from Theorem 1 [4] and Theorem 2 [1].

EXAMPLE 2 (see [7]): The eigenvalues of A for the scheme

$$\begin{cases} \alpha = a, & \alpha = b, & \beta = c, & \beta = d, \\ \alpha = \alpha + \beta = n+1 & n \\ \beta = \beta + \alpha = n+1 & n \end{cases}$$
 are $\mu_{1,2} = (1 \pm \sqrt{5})/2, \quad \mu_{3,4} = \exp(\pm i, \pi/3).$

EXAMPLE 3 (see [6]): The eigenvalues of A for the scheme

$$\begin{cases} \alpha_0 = a, & \alpha_1 = b, & \beta_0 = c, & \beta_1 = d, \\ \alpha_{n+2} = \beta_{n+1} + \beta_n \\ \beta_{n+2} = \alpha_{n+1} + \alpha_n \\ are \ \mu_{1,2} = (1 \pm \sqrt{5})/2, \ \mu_{3,4} = \exp(\pm 2.1.\pi/3). \end{cases}$$

EXAMPLE 4: The eigenvalues of A for the scheme

$$\begin{cases} \alpha_0 = a, & \alpha_1 = b, & \beta_0 = c, & \beta_1 = d, \\ \alpha_1 = \alpha_1 + \beta_1 \\ \alpha_{1+2} = \alpha_{1+1} + \alpha_1 \\ \beta_{1+2} = \alpha_{1+1} + \alpha_1 \\ \alpha_{1+2} = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_1 = \alpha_1 + \alpha_2 \\ \alpha_2 = \alpha_1 + \alpha_2 \\ \alpha_3 = \alpha_1 + \alpha_2 \\ \alpha_4 = \alpha_1 + \alpha_2 \\ \alpha_5 = \alpha_1 + \alpha_2 \\ \alpha_$$

EXAMPLE 5: The eigenvalues of A for the scheme

$$\begin{cases} \alpha_{0} = a, & \alpha_{1} = b, & \beta_{0} = c, & \beta_{1} = d, \\ \alpha_{n+2} = \beta_{n+1} + \alpha_{n} \\ \beta_{n+2} = \alpha_{n+1} + \alpha_{n} \\ \alpha_{n+2} = (1 \pm \sqrt{5})/2, & \mu_{3} = -1, & \mu_{4} = 0. \end{cases}$$
 are $\mu_{1,2} = (1 \pm \sqrt{5})/2, & \mu_{3} = -1, & \mu_{4} = 0.$

EXAMPLE 6: The eigenvalues of A for the scheme

$$\begin{cases} \alpha_0 = a, & \alpha_1 = b, & \alpha_2 = c, \\ \alpha_{n+3} = 2, & \alpha_{n+1} + \alpha_n \end{cases}$$

are $\mu_{1.2} = (1 \pm \sqrt{5})/2$, $\mu_{2} = -1$.

REFERENCES:

- [1] Georgiev P., Atanassov K., On one generalization of the Fibonacci sequence. Part I: Matrix representation. Bulletin of Number Theory, Vol. XVI, 1992, 67-73.
- [2] Georgiev K., Atanassov K., On one generalization of the Fibonacci sequence. Part II: Some relations with arbitrary initial values. Bulletin of Number Theory, Vol. XVI, 1992, 75-82.
- [3] Georgiev K., Atanassov K., On one generalization of the Fibonacci sequence. Part III: Some relations with fixed initial values. Bulletin of Number Theory, Vol. XVI, 1992, 83-92.
- [4] Georgiev P., Atanassov K., On one generalization of the Fibonacci sequence. Part IV: Multiplicity roots of the characterestic equation, see pp. 3-7.
- [5] Georgiev P., Atanassov K., On one generalization of the Fibonacci sequence. Part V: Some examples, see pp. 8-13.
- [6] Atanassov K., Atanassova L., Sasselov D. A new perspective to the generalization of the Fibonacci sequence, The Fibonacci Quarterly Vol. 23 (1985), No. 1, 21-28.
- [7] Atanassov K. On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly Vol. 24 (1986), No. 4, 362-365,
- [8] Atanassov K., Hlebarska J., Mihov S. Recurrent formulas of the generalized Fibonacci and Tribonacci sequences. The Fibonacci Quarterly Vol. 30, (1992), No. 1, 77-79.

Received in BNT in May 1994