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THE TWIN PRIME PROBLEM, ACCORDING TO IIARDY-LITl LEWOOD

by Aldo Peretti

Abstract:
The ideas suggested by Hardy and Littlevvood in their paper (1) concerning the subject o f the 
title, are explained at fu ll  length. A further contribution is made by the introduction o f  
Poisson’s integral formula in the solution o f the problem.

1. In pages 41 and 42 of their celebrated paper on P. N. Ill (ref. (1)), Hardy and Littlevvood 
indicate, in a too condensed form, how could be proved the existence of infinite twin primes. 
Furthermore, they conjecture a formula for (n) , the pairs of primes pi , pi + k = p2 , less 
than x , expressed in their conjecture B , given below.
The purpose of this paper is to develop in full detail the central ideas of these two pages, as dense 
as fruitful.

2. Obtention of a generating function for the twin primes.
Consider the function

[1] f(x) = Z  logp. xp
P

where p denotes the prime numbers. It is well known that f  (x) has a natural boundary on | x | 
= 1 . Next, we choose

[2] x = R ei>F

where, of course 0 < R < 1 .
Afterwards, we form

[3]

2k

J(R) = —  { f ( R e'1') f(R  e~iT) (R elf')k 
271 O

d 'F

where k denotes a fixed natural number. We have then
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[4] J (R) = —  J { 2  log pi Rpi ep',p} log p2 R?2 e p2lJ} Rk e,lĉ  d T  
2k o

Inside the unit circle the series are uniformly convergent; their product is equally well uniformly 
convergent, and so term by term integration is permissible, over a finite interval, even after the

ik̂ /
multiplication by e 
We obtain thus:

271

[5] J(R) =
2tc

271

2  2  log Pi log p2 Rpi+p2+k j  ei'f/(pr p2+k)
Pi P2 O

d 'F

Now, it is an obvious fact that

2n

[6] j
0
[ ei'P(pr p2+k) d T  -

i.e.:

[7] j
0

271
f eiT(pr<Vk) d 'F =

f 0 i f p i - p 2 + k ^ 0  

{ 2k if pi -  p2 + k = 0

f 271 if pi and p2 are twin primes of difference k 

l 0 in any other case

Hence [5] reduces to:

[8] J (R) = 2 2  log pi log p2 Rpi+p2+k

where now the double sum is no longer extended to all the primes, but only to the twin primes of 
difference k .
Evidently, formula [8] can be regarded as the generating function for the logarithms of the twin 
primes. (This does not exclude, of course, the fact that the double sum could be a finite series).
In order to draw some conclusion about the order of magnitude of J (R) as R approximates to 
the unit circle, we need to find some alternative way for evaluating J (R) , and this is what we 
perform in the following paragraph, through an alternative representation of f  (x).



3. The Farey dissection of f  (x).
The formula

[V n] q F (q)
[9] f  (z) = E  log p. zp = E  2  ----------------------  + A n^+,A+8

p q-1  h=o <p (q) z 1 _  \
(h,q)=l l  1 p )

is to be found in ref. (2).
Here fi (q) is the Moebius function; cp (q) is Euler’s function: quantity of naturals < q and

prime with q . p denotes a primitive root of unity: p = e27rill/cl ? with (h,q) = 1 and $ is the 
upper bound of the real part of the zeros of the L-series involved in the problem.

ivjy - .
The approximation is valid as far as z = R e , with R = e-1/n

I k 2k
[10] x = e y y = ------ Si Si < S < S2 — = _< $1 , ^2 < ■■■

II 2 V n V n

Now, J (R) is nothing but

2k

[11] J(R) = —  j  f ( z )  f (  z )  zk~l d z
2k o
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( z = conjugate of z ), or, what is the same:

[ 12] J(R) — 7- { f  ( z ) f ( z )  zk l  d z
2zci c

where C can be any circle of radius R < 1 surrounding the origin.

4. We form now:

[13] f ( z ) f ( z )  = E E E E
q, q2 hi h2

F(qO F(q2> 

<p(qi) q>(q2)

1
+
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+ A n +̂%+8 2  2 
q h

p(q)

<p(q) (  i -  a  j

+ A2 n2$ +HfS +

+ A n^+lA+8 2  2 
q h

p(q)

<p(q) [ i - - z
pi

The arcs along which we can perform the integration of [13] are those limited by the inequalities 
[10], that represent only a small part of the whole circle C . But here Hardy and Littlewood make 
explicitly the following hypothesis:
Hypothesis
When we perform the integration of [13] along C , we obtain an asymptotic value for J (R).
That is to say that they assume

[14] J(R) M s
n(q0

+
A

2ni
n0+'/4+8 { 2 2

n(q?) v y
k-lz

(p(q2) 1>1
/imw4
h2

f 1 "  — 1 ̂ Pi )

H(q) zk_1 1 f 0+ - J a 2

P2

c q h (p(q) ^ j _ _z_ j  2tc1 c

+
A

2ni
n̂ +%+8 J 2  2

fi(q) zk-l

c q h (p(q)

fhe third term at right vanishes, because it is the integral along C of an analytic function inside C .

At the remaining teims of the right handside we can interchange the signs J and 2  because we 
are dealing with finite sums, so that

[15] J(R)
p(q0 p(q2>

q> <p(qi) q2 <r(q2)
2 2
hi h2

1

27ii c

k-lz d z

z
P2 )
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+
2ni

r
n^+,/-v+E i Z  Z n(q) f |  zk 1

l q h (p(q) V c 1 -  7
p

d z
+ f k-1 A z d z ^ 1

C 1 -  _Z J
p

5. We must evaluate now:

[16] It,2 = -  f k-1 a z d z Pi P2
k-1 ,z d z

27ti c [ | z
Pi P2

2ni c ( Z- Pl ) ( z -p 2 )

-lHie integrand is an analytic function of z, with poles at z = pi and z = p2, i.e. at z = p2 = P2 
These poles are exactly in the boundary R = 1 , but as by hypothesis, R < 1 , the integrand is 
analytic inside C . Hence, by Cauchy’s integral theorem:

[17] Il,2 = 0 whatever be the radius R < 1

-lThere is, however, a unique exception to the former statement, which occurs when pi = P2 = p. 
Then we have:

[18] Il,2 = I 1,2 -  f k -1 a z d z

27ti c ( j _ z 1 ( 1 -  z p )

Putting z = R e ia p = e27r'^ q ? Vve obtain:

Rk 271 ika te d a
[19] I  1,2 =

2k °  1 -  2 R cos (a  -  27ih/q) 4- R2

This is nothing but a special case of Poisson’s classical integral formula (ref. (3)):

271

[20] U (ri, (3) = —  \
2 2 *2 ~ ri

271 0 r22 -  2 rj r2 cos (a  -  p) + ri2
u (i'2, a )  d a

iouk(where 0 < ri < r2 ), when r2 = 1, tq = R < 1, u (R, a ) = (R e ) .
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We deduce thus

[21]
u (Ri 27cli/q) 

1 -  R2

R*

1 -  R2

^27iihk/q

Summaryzing, we have:

[22] I l ,2

6. We consider now

[o  if pi ^  p2 1 whatever be R

I . Rk . e2mhk/q jf pi = p2~i
{ 1 -  R2

[23] Ip
1

2jci c

f k-l t z d z

‘  0 - f )
+

The integrand has only two simple poles at z = p and z = p , that lie outside the contour C 
defined by R < i; hence; by Cauchy’s theorem.

[24] Ip = 0

7. With the results [22] and [24] at hand, we return to [15] deducing that:

[25] J(R )
p2(q)

<p2(q)

q
E
h=l

27iihk/qe

(h,q)=l
l - R 2

Next, by definition, we have that

[26] £  e2™hk/q = Cq (k)

(h,q)=l

where Cq(n) is Ramanujan’s function. Hence
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[27]
H2(q)

2  -  Cq (k)
q=l (p (q)

is the singular series of Hardy-Littlewood truncated at q = [V n] .

We denote it by Syn (k ) . It is bounded as n -> co , so that we can write:

[28] SVn(k) -  Soo(k) < 1 +
'  1 ^
V n y

or, otherwise expressed:

[29] SVn(k) ~ Sco(k)

The multiplicative properties of the functions that appear in the singular series enables us to 
transform it into a product, the result being (ref. (1) p. 42):

[30] $oo. (k) =
002 n

P=3
1 -

1

( P - 1  f )
n p - i

pdc p -  2

(from ]iere follows the result [29] ) 
Hence, from [26] follows:

[31] J(R)
Soo(k) R* 

1 - R 2

But the series development [8] of J (R) can be written as:

[32] J ( R) = 2 2  log pi log p2 R2p2

due to the fact that pi = P2 -  k .
2Hence, if we put R = r , we can write [32] taking account of [31] as:

k/2

[33]
^  n r Sqo (k)

J(r) = 2  2  log p] log p2 rp2 ~ ------  Soo(k) ~
1 -  r 1 - r
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The partial sum s (n) of the coefficients of J (r) up to p2 = n is:

[34] s(n) = Z  Z  log pi log p2 
twins < n

We apply now to the series development [33] of J (r) the tauberian theorem of ref. (3) p. 225, 
that states that if

f(x) -
C

1 - x

as x -> 1 , and the coefficients aj in the power series expansion of f  (x) are positive, then s (n) 

= 3[ + a2 + ... + an ~ C.n.

(This is a very particular case of a much more general theorem of Hardy and Littlewood in ref.

(4)).
On account of [33] we obtain:

[35] Z  Z  log p! logp2 ~ nSoo(k)
twins < n

that is justly hypothesis B ofP. N. III.
This implies, as Hardy and Littlewood point out, that Pk (n) , the quantity of twin primes (with 
difference k ) < n would be

By the way, we can recall that

Soo(k)

where the p are odd primes and

i ]
1 ------------- I = 1,3023...

( P - D 2J

Pk(«)
n

log2 n
Soo(k)

00

2 n
p=3

1

(P“ 1)2>

P - 1
11 ------
p/k p -  2
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8. The question that presents itself in the preceding lines is if the hypothesis made in paragraph 4 
above can be proved by some way.
My personal opinion is that following the model that appears in Landau’s “Vorlesungen”, V Teil, 
Kap. 6 Zweiter und Dritter Schritt formulas (224) - (230), p. 220 the hypothesis concerning the 
sums that appear in [13] could be ultimately proved.
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