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GENERALIZED JACOBSTHAL REPRESENTATION SEQUENCE {Tn}

A.F. Horadam, The University of New England, Armidale 2351, Australia
1. INTRODUCTION

Because of the non-Fibonacci nature of the definition of JacobsthAl numbers, various
interesting aspects of these numbers merit attention per se. This project generalizes and
extends some of the material in [4].

Consider the recurrence relation
A+2 = Yl + 2Yn + k (1.2)

where

TO=1a, Ti = 6 (1.2)

a, 6, k are, in general.integers. Designate this recurrence sequence by

{Tn(a, b, k)} (1.3)

or, simply,

{T.} (1.3a)

when no confusion can exist, and, write, for later convenience,

c=a-fi6eT k. (1.4)

Also, let Jn = Yn(0,1,0). SoJn=Jn_i + 2Jn_2. From [4],

(1.5)

The first few members of {Yn} are, given by the following table.

n 01 2 3 4 5 6
Tn a 6 2aTbYk 2a+ 36+ 2k 6a+ 56+ 5k 10+ ll& + 10fc 22a + 216 + 21k

n 7 8 9 10
Tn 42 a+ 436 + 42k 86a + 856 + 85k 170a + 1716+ 170fc 342a + 3416 + 341k

Induction with a little manipulation reveals that Tn is tied to Jn as follows:



Theorem 1: Th_ cn+a n even (1.7a)

cJn - (a-fk) n odd. (1.7b)
Proof: Clearly, the Theorem is true forn =0,1,2 Jo = 0, J\ —1, J2= 1).
Assume the Theorem is valid forn = 0,1,2, ... ,N —1, N.
For N even,
Y7vti — YN+ 2Yoeri T k by (1.1)
= Tjv—a+ 2(TalifaTA) —(a+ /o
= cJn + 2c)M i —(a+ k) by (1.7a), (1.76)
— c(In + 2J)a7_i) —(a-f k)
= clJlvir —(a + k) by the recurrence relation for {Jn }.

For N odd,
Toti — TjvT 2Tjw-i T k by (1.1)
— Tw+aTk+ 2(Tee1 —a) T a
— cJw T 2cJe+i T a by(1.7a), (1.76)

= cdwti + a as before.

Thus, the Theorem is also valid for N + 1 odd and N + 1 even.

Hence, the Theorem is true.

Values of T_n(u > 0) may be obtained from (1.1) by extending n through negative

values. In particular,

T-i = 1(6 —a —Kk). (1.8)

W ithout undue difficulty, we can establish by (1.2) and (1.8) the generating function

I-1 6-f (2a —6+ k)x —2ax2
X
21 (1 —x —2rc2)(1 —x) (1.9)
T1+ {TO-T .1)x-2T0x2 '
1 —x —2;r2)(1 —x)
The generating function for the Tn is
e (6 —a —k) + (2a —b)x —ax’
E T-X i @2+ x —x2)(I —x)
21 (1.10)

2T 1+ (2Tg-T Dx-T 0x2
2+ x —x2)(I —x)

Substitution of (1.5) in (1.7a) and (1.7b) produces the Binet form(s) for Tn.



Besides {Jn}, other sequences of interest to us are {jn}, {Jn}, and {jnj for which

jn= 1+ (-1)" (1.11)
Jn= 1{2"+3+ (-1)" - 9} (1.12)
Jn = ~M{2742 + (-1)” - 5} (1.13)

respectively. Many basic properties of these four sequences are provided in [4].
Checking the results displayed in the remaining segments of this exposition often involves
the discovery of further neat facts, e.qg.

n even

Jn 1.14
n odd , ( )

It should be remarked, though perhaps it is obvious, that every fractional form in this
paper does reduce to an integer, e.g. ifthe denominator is 3, then divisibility by 3 is always

provable by elementary number-theoretic computation.
2. SPECIAL CASES

Jacobsthal-type sequences discussed in [4] are readily seen to be special cases of {Tn}

according to the following tabulation:

k2 a b k c
Ja 0 1 0 1
jn 2 1 0 3 (2.1)
Jn 0 1 3 4
jn 0 1 5 6
Trivial cases arise when ¢ = O:
n even (2.2a)
Tn(c=0) —
1 n even
by (1.4) and (1.7a), (1.7b). E.g., Tn(I,1,-2) - 1,T7,(1,0,-1) -
n odd.
A set of particular cases of interest is
Jn n even (2.3a)

Tn(0,0,1) = Tn_i(0,1,1) = Tn_2(I, 2,1)
Jn~I n odd- (2.3b)
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Other special instances of {Yn} and their values may be tabulated in grid form as

follows:
Yn(a, 6, k) n even n odd
T.(1,1L,1) 3J), +1=22 3Jn- 2=2n-1
Yn(a,o,k) 2aJn— + kjn 2(a + /c)dn_i (2.4)
Yn(o, 6, k) 6 -f k)JIn bJn d- 2kJn= '
Yn(a, 6, 0) (a-f6)Jn+ a 2{a + b)Jn-i + 6
Yn(a,fl, k) QIn+X "bkJn (iJn+i b 2kJn_i
In particular, Yn(l,2,0) = 2n.
Subsequently, for simplicity we shall use the symbolism
T»(l,1,1) = )Tn. (2.5)
3. SOME PROPERTIES OF {Tn}
Elementary calculations based on (1.5) and (1.7a), (1.7b) yield inter alia
Tn+i + Tn—2nc —Kk (3.1)
N 227 - 1
T n+r :.rn—r - R ( (3-2)
3T2n= (22n - I)c + 3a (3.3)
3Y2n+i = (22n+l + 1)c —3(a + k) (3.4)
AYn+l X
" (3.5)
2Y, (3.6)

) . [c(5.2n 2—2) + 26 n even
Y+ + Yni (3.7)
[c(5:2n 2—1) -f 2a n odd.

Other identities may be deduced by applying the definitions of Yn and Jn. A detemi-

nantal result concludes this short theoretical section:

r,, Tntl t,+2
T,+l Tn+t2 T,+3 = fee()"+1(4a —26 + (3.8)
t,¥2 T,t3 Tn+4

where
2a —b n even
nTno-T ntlTn+2 T (3.9)
—2a+ 6—k n odd

has been utilised.
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Verification of (3.8) and (3.9) for the special cases Tn = Jn and Tn = jin, which are

supplied in [4], is worthwhile. When Yn = xYn, this case might be given cursory attention.

Simson Formula Analogues

n even:
T,+1Tn_i - T* = {(6 —2a —fc)2"~1+ 2fc——0~ 1)}c + fe(2a + fc) (3.10)
n odd:
Th+1Tn i - r@= {(-b+

While these forms necessarily appear somewhat like a mathematical ugly duckling, in
special cases - cf.(2.1) and [4] - they can be very fine swans indeed!
Furthermore, (3.10), (3.11), and (2.5) lead to
5 —5.2n 1+ 1 n even

iYntl 1IT722-1T 7 (3.12)
2n+l —1 n odd.

Associated Sequences

Define

+ 2TErm\ (3.13)

where Y0) = Yn, to be the kth associated sequence of {Yn}. See [2] for other developments

of this concept.

Now
cjn ~ 3(a+ k) n even
T*1’= Tntl + 2Tn_! = ) (3.14)
cjn + 3a n odd,
T(2 ) i OT2 9cjn+ 9a n even
1$|)_tn+)1 LN T (3.15)

9cjn—9(a -f k) n odd,

and so.on. Eventually

Y@em) <A cInAa n even (3.16)
[ cdn- (a+ k) n odd, '
A2m+1) mi cin- 3(a+ k) n even 317
[ cjn+ 3a n odd. '
Examples:
=0,c=1)
J™ — 8" dn (3.18)

j@m+) _ g2my (3.19)
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(i) T -jnfa=2 k=0 c= 3):
J:, =302mj:,

J-rgzm—l) _ Q2m j

sﬁtn(zm) _ 2m rrn

j2m+l) ¥
(iv T =jn(a=0, k=5 c= 6):
e — gemy,
Yizm+l) = 32%+i(3j7,_ 1+ 2).
(V) T,, = ,T n(a =1, k :1, cC= 3)

TR f 32”°.2n " even
" | 32mjn n odd

T @em+i) = [ 32m+2*n n even
| 32m+12n n odd.

See also [4] and [5].

4. CONCLUSION

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

There are at least two directions in which this outline of the features of {Tn} could be

developed:

(i) extension of the theory to negative subscripts, i.e., {T_n}, n > o, and

(ii) generalization of the number-theoretic properties of {Tn} to properties of polynomial

sequences {T,(x)}.

Progress with'both (i) and (ii) has been made.

One might also consider a possible analysis of the plane curves dspect of our sequences.

Consult [1] for some ideas.

Reference [3] contains material which, for Pell numbers, in a sense complements some

of the theory developed in this presentation.
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