# GENERALIZED JACOBSTHAL REPRESENTATION SEQUENCE $\{\Upsilon_n\}$

A.F. Horadam, The University of New England, Armidale 2351, Australia

### 1. INTRODUCTION

Because of the non-Fibonacci nature of the definition of Jacobsthal numbers, various interesting aspects of these numbers merit attention *per se*. This project generalizes and extends some of the material in [4].

Consider the recurrence relation

$$\Upsilon_{n+2} = \Upsilon_{n+1} + 2\Upsilon_n + k \tag{1.1}$$

where

$$\Upsilon_0 = a, \Upsilon_1 = b; \tag{1.2}$$

a, b, k are, in general, integers. Designate this recurrence sequence by

$$\{\Upsilon_n(a,b,k)\}\tag{1.3}$$

or, simply,

$$\{\Upsilon_n\} \tag{1.3a}$$

when no confusion can exist, and, write, for later convenience,

$$c = a + b + k. \tag{1.4}$$

Also, let  $J_n = \Upsilon_n(0,1,0)$ . So  $J_n = J_{n-1} + 2J_{n-2}$ . From [4],

$$J_n = \frac{1}{3}(2^n - (-1)^n). \tag{1.5}$$

The first few members of  $\{\Upsilon_n\}$  are, given by the following table.

| n            | 0                                  | 1 | 2           | 3               |      | 4                  | 5           |                    | 6              |   | )     |
|--------------|------------------------------------|---|-------------|-----------------|------|--------------------|-------------|--------------------|----------------|---|-------|
| $\Upsilon_n$ | a                                  | b | 2a+b+k      | 2a + 3b + 2k    | 6a + | -5b+5k             | 10a + 11b + | - 10k              | 22a + 21b + 21 | k | (1.6) |
| n            |                                    |   | 7           | 8               | 8    |                    | 9           |                    | 10             |   | (1.0) |
| 2            | $\Upsilon_n = 42a + 43b + 42k = 8$ |   | 86a + 85b + | 86a + 85b + 85k |      | 170a + 171b + 170k |             | 342a + 341b + 341k |                | J |       |

Induction with a little manipulation reveals that  $\Upsilon_n$  is tied to  $J_n$  as follows:

Theorem 1: 
$$\Upsilon_n = \begin{cases} cJ_n + a & n \text{ even} \\ cJ_n - (a+k) & n \text{ odd.} \end{cases}$$
 (1.7a)

<u>Proof:</u> Clearly, the Theorem is true for n = 0, 1, 2 ( $J_0 = 0, J_1 = 1, J_2 = 1$ ).

Assume the Theorem is valid for n = 0, 1, 2, ..., N - 1, N.

For N even,

$$\Upsilon_{N+1} = \Upsilon_N + 2\Upsilon_{N-1} + k$$
 by (1.1)  
=  $\Upsilon_N - a + 2(\Upsilon_{N-1} + a + k) - (a + k)$   
=  $cJ_N + 2cJ_{N-1} - (a + k)$  by (1.7a), (1.7b)  
=  $c(J_N + 2J_{N-1}) - (a + k)$   
=  $cJ_{N+1} - (a + k)$  by the recurrence relation for  $\{J_n\}$ .

For N odd,

$$\Upsilon_{N+1} = \Upsilon_N + 2\Upsilon_{N-1} + k$$
 by (1.1)  
=  $\Upsilon_N + a + k + 2(\Upsilon_{N-1} - a) + a$   
=  $cJ_N + 2cJ_{N-1} + a$  by (1.7a), (1.7b)  
=  $cJ_{N+1} + a$  as before.

Thus, the Theorem is also valid for N+1 odd and N+1 even.

Hence, the Theorem is true.

Values of  $\Upsilon_{-n}(n > 0)$  may be obtained from (1.1) by extending n through negative values. In particular,

$$\Upsilon_{-1} = \frac{1}{2}(b - a - k). \tag{1.8}$$

Without undue difficulty, we can establish by (1.2) and (1.8) the generating function

$$\sum_{i=1}^{\infty} \Upsilon_{i} x^{i-1} = \frac{b + (2a - b + k)x - 2ax^{2}}{(1 - x - 2x^{2})(1 - x)}$$
$$= \frac{\Upsilon_{1} + (\Upsilon_{0} - \Upsilon_{-1})x - 2\Upsilon_{0}x^{2}}{(1 - x - 2x^{2})(1 - x)}.$$
(1.9)

The generating function for the  $\Upsilon_n$  is

$$\sum_{i=1}^{\infty} \Upsilon_{-i} x^{-i+1} = \frac{(b-a-k) + (2a-b)x - ax^2}{(2+x-x^2)(1-x)}$$

$$= \frac{2\Upsilon_{-1} + (2\Upsilon_0 - \Upsilon_1)x - \Upsilon_0 x^2}{(2+x-x^2)(1-x)}.$$
(1.10)

Substitution of (1.5) in (1.7a) and (1.7b) produces the Binet form(s) for  $\Upsilon_n$ .

- 7 -

Besides  $\{J_n\}$ , other sequences of interest to us are  $\{j_n\}$ ,  $\{\mathcal{J}_n\}$ , and  $\{\hat{j}_n\}$  for which

$$j_n = 2^n + (-1)^n (1.11)$$

$$\mathcal{J}_n = \frac{1}{6} \{ 2^{n+3} + (-1)^n - 9 \}$$
 (1.12)

$$\hat{j}_n = \frac{1}{2} \{ 2^{n+2} + (-1)^n - 5 \}$$
 (1.13)

respectively. Many basic properties of these four sequences are provided in [4].

Checking the results displayed in the remaining segments of this exposition often involves the discovery of further neat facts, e.g.

$$\hat{j}_n = \begin{cases} 6\mathcal{J}_n & n \text{ even} \\ 6\mathcal{J}_n - 5 & n \text{ odd} \end{cases}$$
 (1.14)

It should be remarked, though perhaps it is obvious, that every fractional form in this paper does reduce to an integer, e.g. if the denominator is 3, then divisibility by 3 is always provable by elementary number-theoretic computation.

#### 2. SPECIAL CASES

Jacobsthal-type sequences discussed in [4] are readily seen to be special cases of  $\{\Upsilon_n\}$  according to the following tabulation:

Trivial cases arise when c = 0:

$$\Upsilon_{n(c=0)} = \begin{cases} a & n \text{ even} \\ b & n \text{ odd} \end{cases}$$
(2.2a)

by (1.4) and (1.7a), (1.7b). E.g., 
$$\Upsilon_n(1,1,-2) = 1$$
,  $\Upsilon_n(1,0,-1) = \begin{cases} 1 & n \text{ even} \\ 0 & n \text{ odd.} \end{cases}$ 

A set of particular cases of interest is

$$\Upsilon_n(0,0,1) = \Upsilon_{n-1}(0,1,1) = \Upsilon_{n-2}(1,2,1) = \begin{cases}
J_n & n \text{ even} \\
J_n - 1 & n \text{ odd.} 
\end{cases}$$
(2.3a)

Other special instances of  $\{\Upsilon_n\}$  and their values may be tabulated in grid form as follows:

In particular,  $\Upsilon_n(1,2,0) = 2^n$ .

Subsequently, for simplicity we shall use the symbolism

$$\Upsilon_n(1,1,1) \equiv {}_{i}\Upsilon_n. \tag{2.5}$$

# 3. SOME PROPERTIES OF $\{\Upsilon_n\}$

Elementary calculations based on (1.5) and (1.7a), (1.7b) yield inter alia

$$\Upsilon_{n+1} + \Upsilon_n = 2^n c - k \tag{3.1}$$

$$\Upsilon_{n+r} - \Upsilon_{n-r} = 2^{n-r} \left( \frac{2^{2r} - 1}{3} \right) c$$
 (3.2)

$$3\Upsilon_{2n} = (2^{2n} - 1)c + 3a \tag{3.3}$$

$$3\Upsilon_{2n+1} = (2^{2n+1} + 1)c - 3(a+k) \tag{3.4}$$

$$\lim_{n \to \infty} \left( \frac{\Upsilon_{n+1}}{\Upsilon_n} \right) = 2 \tag{3.5}$$

$$2\Upsilon_n - \Upsilon_{n+1} = \begin{cases} 2a - b & n \text{ even} \\ -2a + b - k & n \text{ odd} \end{cases}$$
 (3.6)

$$\Upsilon_{n+1} + \Upsilon_{n-1} = \begin{cases} \frac{2}{3}c(5.2^{n-2} - 2) + 2b & n \text{ even} \\ \frac{2}{3}c(5.2^{n-2} - 1) + 2a & n \text{ odd.} \end{cases}$$
(3.7)

Other identities may be deduced by applying the definitions of  $\Upsilon_n$  and  $J_n$ . A determinantal result concludes this short theoretical section:

$$\begin{vmatrix} \Upsilon_n & \Upsilon_{n+1} & \Upsilon_{n+2} \\ \Upsilon_{n+1} & \Upsilon_{n+2} & \Upsilon_{n+3} \\ \Upsilon_{n+2} & \Upsilon_{n+3} & \Upsilon_{n+4} \end{vmatrix} = kc(-1)^{n+1}(4a - 2b + k)2^n$$
(3.8)

where

$$\Upsilon_n \Upsilon_{n+3} - \Upsilon_{n+1} \Upsilon_{n+2} = 2^n c \begin{cases} 2a - b & n \text{ even} \\ -2a + b - k & n \text{ odd} \end{cases}$$
 (3.9)

has been utilized.

Verification of (3.8) and (3.9) for the special cases  $\Upsilon_n = \mathcal{J}_n$  and  $\Upsilon_n = \hat{j}_n$ , which are supplied in [4], is worthwhile. When  $\Upsilon_n = {}_{\mathbf{i}}\Upsilon_n$ , this case might be given cursory attention. Simson Formula Analogues

n even:

$$\Upsilon_{n+1}\Upsilon_{n-1} - \Upsilon_n^2 = \{(b-2a-k)2^{n-1} + 2k\frac{(2^{n-2}-1)}{3}\}c + k(2a+k)$$
 (3.10)

n odd:

$$\Upsilon_{n+1}\Upsilon_{n-1} - \Upsilon_n^2 = \{(-b+2a-k)2^{n-1} + 2k\frac{(2^n+1)}{3}\}c - k(2a+k). \tag{3.11}$$

While these forms necessarily appear somewhat like a mathematical ugly duckling, in special cases – cf.(2.1) and [4] - they can be very fine swans indeed!

Furthermore, (3.10), (3.11), and (2.5) lead to

$${}_{1}\Upsilon_{n+1} {}_{1}\Upsilon_{n-1} - {}_{1}\Upsilon_{n}^{2} = \begin{cases} -5.2^{n-1} + 1 & n \text{ even} \\ 2^{n+1} - 1 & n \text{ odd.} \end{cases}$$
 (3.12)

Associated Sequences

Define

$$\Upsilon_n^{(k)} = \Upsilon_{n+1}^{(k-1)} + 2\Upsilon_{n-1}^{(k-1)},\tag{3.13}$$

where  $\Upsilon_n^{(0)} \equiv \Upsilon_n$ , to be the  $k^{th}$  associated sequence of  $\{\Upsilon_n\}$ . See [2] for other developments of this concept.

Now

$$\Upsilon_n^{(1)} = \Upsilon_{n+1} + 2\Upsilon_{n-1} = \begin{cases} cj_n - 3(a+k) & n \text{ even} \\ cj_n + 3a & n \text{ odd,} \end{cases}$$
(3.14)

$$\Upsilon_n^{(2)} = \Upsilon_{n+1}^{(1)} + 2\Upsilon_{n-1}^2 = \begin{cases} 9cJ_n + 9a & n \text{ even} \\ 9cJ_n - 9(a+k) & n \text{ odd,} \end{cases}$$
(3.15)

and so on. Eventually

$$\Upsilon_n^{(2m)} = 3^{2m} \begin{cases} cJ_n + a & n \text{ even} \\ cJ_n - (a+k) & n \text{ odd,} \end{cases}$$
(3.16)

$$\Upsilon_n^{(2m+1)} = 3^{2m} \begin{cases} cj_n - 3(a+k) & n \text{ even} \\ cj_n + 3a & n \text{ odd.} \end{cases}$$
 (3.17)

Examples:

(i) 
$$\Upsilon_n = J_n(a=0, k=0, c=1)$$
:

$$J_n^{(2m)} = 3^{2m} J_n (3.18)$$

$$J_n^{(2m+1)} = 3^{2m} j_n. (3.19)$$

(ii)  $\Upsilon_n = j_n (a = 2, k = 0, c = 3)$ :

$$j_n^{2m} = 3^{2m} j_n (3.20)$$

$$j_n^{(2m-1)} = 3^{2m} J_n. (3.21)$$

(iii)  $\Upsilon_n = \mathcal{J}_n(a = 0, k = 3, c = 4)$ :

$$\mathcal{J}_n^{(2m)} = 3^{2m} \mathcal{J}_n \tag{3.22}$$

$$\mathcal{J}_n^{2m+1)} = 3^{2m} (\hat{j}_{n+1} - 2). \tag{3.23}$$

(iv)  $\Upsilon_n = \hat{j}_n(a = 0, k = 5, c = 6)$ :

$$\hat{j}_n^{(2m)} = 3^{2m} \hat{j}_n \tag{3.24}$$

$$\hat{j}_n^{(2m+1)} = 3^{2m+1}(3\mathcal{J}_{n-1} + 2). \tag{3.25}$$

(v)  $\Upsilon_n = {}_{1}\Upsilon_n(a=1, k=1, c=3)$ :

$${}_{1}\Upsilon_{n}^{(2m)} = \begin{cases} 3^{2m}2^{n} & n \text{ even} \\ 3^{2m}j_{n} & n \text{ odd} \end{cases}$$
 (3.26)

$${}_{1}\Upsilon_{n}^{(2m+1)} = \begin{cases} 3^{2m+2}J_{n} & n \text{ even} \\ 3^{2m+1}2^{n} & n \text{ odd.} \end{cases}$$
 (3.27)

See also [4] and [5].

### 4. CONCLUSION

There are at least two directions in which this outline of the features of  $\{\Upsilon_n\}$  could be developed:

- (i) extension of the theory to negative subscripts, i.e.,  $\{\Upsilon_{-n}\}$ , n > o, and
- (ii) generalization of the number-theoretic properties of  $\{\Upsilon_n\}$  to properties of polynomial sequences  $\{\Upsilon_n(x)\}$ .

Progress with both (i) and (ii) has been made.

One might also consider a possible analysis of the plane curves aspect of our sequences. Consult [1] for some ideas.

Reference [3] contains material which, for Pell numbers, in a sense complements some of the theory developed in this presentation.

#### REFERENCES

- 1. Horadam, A.F.: "Jacobsthal and Pell Curves." *The Fibonacci Quarterly*, 26.1 (1988): 77-83.
- 2. Horadam, A.F.: "Associated Sequences of General Order." The Fibonacci Quarterly, 31.2 (1993): 166-172.
- 3. Horadam, A.F.: "Min Max Sequences for Pell Numbers." *Applications of Fibonacci Numbers*, Vol. 6. Ed. G.E. Bergum, A.N. Philippou, and A.F. Horadam. Kluwer Academic Publishers, The Netherlands (1996): 231-249.
- 4. Horadam, A.F.: "Jacobsthal Representation Numbers." *The Fibonacci Quarterly*, 34.1 (1996): 68-74.
- Horadam, A.F.: "A Synthesis of Certain Polynomial Sequences". Applications of Fibonacci Numbers , Vol. 6. Ed. G.E. Bergum, A.N. Phillipou, and A.F. Horadam. Kluwer Academic Publishers, Dordrecht, The Netherlands (1996): 215-229.

A.M.S. Classification Numbers: 11B83, 11B37.