NNTDM 2 (1996) 1, 28-32

NOTE ON SOME CLASSICAL ARITHMETIC FUNCTIONS

MLADEN V. VASSILEV - MISSANA

Let $\{\vartheta_t\}_{t=1}^{\infty}$ be an infinite sequence of real numbers, which satisfies the conditions: • c_1) For every $t \in \mathcal{N}$ we have $\vartheta_t \in (1, \frac{1+\sqrt{5}}{2})$, where \mathcal{N} denotes the set of natural numbers, i.e. $\mathcal{N} = \{1, 2, 3, \ldots\}$;

• e_2) For every $t \in \mathcal{N}$ it is fulfiled

$$\frac{1}{\vartheta_{t+1}-1}-\frac{1}{\vartheta_t-1}\geq 1$$

(in particular from c_2) immediatly follows that for every $t \in \mathcal{N}$, $\vartheta_t > \vartheta_{t+1}$).

•e₂) The sequence $\{a_n\}_{n=1}^{\infty}$ converges to $+\infty$, where $a_n = \vartheta_1, \vartheta_2, \dots, \vartheta_n, \quad n \in \mathcal{N}.$ (1)

From (1) obviously follow

 $a_n = \vartheta_n a_{n-1}, \qquad n \in \mathcal{N}, \qquad n \ge 2$ (2)

and

$$a_{n+1} > a_n, \qquad n \in \mathcal{N}. \tag{3}$$

Definition: Let
$$a \in \mathcal{N}$$
 be fixed. For every arithmetic function f we set
 $F_f(a) = \{x \in \mathcal{N} : [f(x)] = a\}$
(4)

(here and further we denote by [y] the integer part of y).

The main result of this paper is :

<u>Theorem 1.</u> Let $\{p_t\}_{t=1}^{\infty}$ be an increasing sequence of primes and $\{\vartheta_t\}_{t=1}^{\infty}$ satisfies the conditions e_1), e_2), and e_3). If a multiplicative function f satisfies the relations $f(p_t) = \vartheta_t$, $t \in \mathcal{N}$ (5)

then for every $a \in \mathcal{N}$ the set $F_f(a)$ has infinitely many elements x, for which it is fulfiled

$$\mu(x) = 0, \tag{6}$$

where μ is the classical Miobius function.

Let $m \in \mathcal{N}$ with canonical form $m = q_1^{\alpha_1} \cdot q_2^{\alpha_2} \cdot \ldots \cdot q_k^{\alpha_k}$ (q_ν are different primes, $\alpha_\nu \geq 1$ are natural numbers, and $\nu = 1, 2, \ldots, k$) be arbitrary. We consider the following classical arithmetic functions given bellow:

$$\psi(m) := m(1 + \frac{1}{q_1})(1 + \frac{1}{q_2})\dots(1 + \frac{1}{q_k})$$
(7)

$$\varphi(m) := m(1 - \frac{1}{q_1})(1 - \frac{1}{q_2})\dots(1 - \frac{1}{q_k})$$
(8)

$$\Phi(m) := m^2 (1 - \frac{1}{q_1^2}) (1 - \frac{1}{q_2^2}) \dots (1 - \frac{1}{q_k^2})$$
(9)

$$\sigma(m) := \frac{q_1^{\alpha_1+1}-1}{q_1-1} \frac{q_2^{\alpha_2+1}-1}{q_2-1} \dots \frac{q_k^{\alpha_k+1}-1}{q_k-1}$$
(10)

where $\sigma(m)$ is the sum of all divisors of m, $\Phi(m)$ equals to the quantity of all irreductible fractions in the matrix:

$$\begin{pmatrix} \frac{1+i}{m}, & \frac{1+2i}{m}, \dots, & \frac{1+mi}{m} \\ \frac{2+i}{m}, & \frac{2+2i}{m}, \dots, & \frac{2+mi}{m} \\ \vdots & & \\ \frac{m+i}{m}, & \frac{m+2i}{m}, \dots, & \frac{m+mi}{m} \end{pmatrix}, (i = \sqrt{-1}),$$

 $\varphi(m)$ is the Euler's totient function, $\psi(m)$ is the function of Dedekind.

In the present paper is shown that in Theorem 1., instead of f, we could put everyone of the following functions:

$$\frac{\psi(m)}{\varphi(m)}, \frac{\sigma(m)}{\varphi(m)}, \frac{\sigma^2(m)}{\Phi(m)}, \frac{\psi(m)}{m}, \frac{m}{\varphi(m)}, \frac{\sigma(m)}{m}, (\text{ see Theorem 2.})$$

In order to prove Theorem 1. we need some assertions.

<u>Lemma 1.</u> If $\{\vartheta_t\}_{t=1}^{\infty}$ satisfies the conditions e_1) and e_2) and $\{a_n\}_{n=1}^{\infty}$ is given by (1), then for every $n \in \mathcal{N}$, $n \geq 2$, the inequality

$$a_{n-1} < \frac{2 - \vartheta_n}{\vartheta_n - 1} \tag{11}$$

holds.

<u>Proof:</u> We shall use an induction by *n*. From c_1) we obtain $\vartheta_1 < \frac{1}{2}$

$$_{1} < \frac{1}{\vartheta_{1} - 1}.\tag{12}$$

On the other hand the inequality

$$\frac{1}{\vartheta_1 - 1} \le \frac{2 - \vartheta_2}{\vartheta_2 - 1} \tag{13}$$

holds, because of e_2). Therefore (12) and (13) imply the inequality

$$\vartheta_1 < \frac{2 - \vartheta_2}{\vartheta_2 - 1}. \tag{14}$$

But (14) coincided with (11) when n = 1.

Let (11) be fulfiled for some $n \ge 2$. It remains to prove that (11) holds with n+1 instead of n too.

We multiply the both hands of (11) by ϑ_n and using (2) we obtain:

$$a_n < \vartheta_n \cdot \frac{2 - \vartheta_n}{\vartheta_n - 1}. \tag{15}$$

Since

$$\frac{2 - \vartheta_{n+1}}{\vartheta_{n+1} - 1} = \frac{1}{\vartheta_n - 1} - 1,$$

the property e_2 implies the inequality
$$\frac{2 - \vartheta_{n+1}}{\vartheta_{n+1} - 1} \ge \frac{1}{\vartheta_n - 1}.$$
 (16)

Since $\vartheta_n < 1$, from the obvious inequality

$$\vartheta_n(2-\vartheta_n)<1$$

it follows

$$\vartheta_n \cdot \frac{2 - \vartheta_n}{\vartheta_n - 1} < \frac{1}{\vartheta_n - 1}.$$
(17)

But (16) and (17) yield

$$\vartheta_n \cdot \frac{2 - \vartheta_n}{\vartheta_n - 1} < \frac{2 - \vartheta_{n+1}}{\vartheta_{n+1} - 1}.$$
(18)

Hence

$$a_n < \frac{2 - \vartheta_{n+1}}{\vartheta_{n+1} - 1},\tag{19}$$

because of (15).

The inequality (19) is just the same as (11) with n + 1 instead of n.

The lemma is proved.

Lemma 2. Let $a \in \mathcal{N}$ and $a \geq 2$ be fixed. If there exists $n \geq 2$, such that the inequality

$$a-1 \le a_{n-1} < a \tag{20}$$

holds, then the inequality

$$a_n \ge a+1 \tag{21}$$

is impossible.

<u>Proof:</u> Let (20) holds for some $n \ge 2$. Then $\vartheta_n . a_{n-1} < \vartheta_n . a$

hence

$$a_n < \vartheta_n.a,$$
 (22)

because of (2).

Let us suppose that (21) holds. Then (21) and (22) imply $a+1 < \vartheta_n.a$

hence

$$a > \frac{1}{\vartheta_n - 1}.\tag{23}$$

But (20) yields

$$1 + a_{n-1} \ge a. \tag{24}$$

Therefore from (23) and (24) we obtain $1 + a_{n-1} > \frac{1}{\vartheta_n - 1}$. Hence $a_{n-1} > \frac{2 - \vartheta_n}{\vartheta_n - 1}$. - 31 -

But the last inequality contradicts to (11), proven in Lemma 1. The lemma is proved.

Corollary If a_{n-1} satisfies (20) for some $n \ge 2$ and $a_n \ge a$, then $[a_n] = a.$ (25)

<u>Lemma 3.</u> Let $\{\vartheta_t\}_{t=1}^{\infty}$ be an arbitrary sequence, which satisfies e_1 , e_2) and e_3). Then for every $a \in \mathcal{N}$ there exists n such, that (25) holds.

<u>Proof:</u> We shall use an induction by a.

For a = 1 we set n = 1 and have $[a_1] = [\vartheta_1] = 1$, i.e. the assertion of the lemma is true, when a = 1.

Let the lemma is true for some a-1, where $a-1 \ge 1$, i.e. there exists n such, that the equality

$$[a_{n-1}] = a - 1 \tag{26}$$

holds.

Let n denotes the greatest number for which (26) is fulfiled. Such n always exists, because of e_3). For this n we obviously have

 $a_n \ge a_n$ (27)

But (26) is equivalent with (20). Therefore the corollary of Lemma 2. is applicable, because of (27). Hence

$$[a_n] = a.$$

The lemma is proved.

<u>Proof of Theorem 1.</u> Let $a \in \mathcal{N}$ be fixed, $j \ge 0$ be integer. Instead of $\{\vartheta_t\}_{t=1}^{\infty}$ we consider the sequence $\{\vartheta_{j+t}\}_{t=1}^{\infty}$.

If we set

$$a_{n,j} = \vartheta_{j+1}.\vartheta_{j+2}\ldots\vartheta_{j+n}, \qquad n \in \mathcal{N},$$
(28)

then the conditions e_1 , e_2) and e_3) are satisfied for the sequence $\{\vartheta_{j+t}\}_{t=1}^{\infty}$, but with ϑ_{j+t} instead of ϑ_t and $a_{n,j}$ instead of a_n .

Therefore the assertion of Lemma 3. remains valid, hence

$$[a_{n,j}] = a \tag{30}$$

for a suitable n.

Using (28) we rewrite (29) in the form

$$[\vartheta_{j+1},\vartheta_{j+2}\ldots\vartheta_{j+n}] = a \tag{30}$$

and set

$$x_j = p_{j+1} \cdot p_{j+2} \dots p_{j+n}. \tag{31}$$

Since f is a multiplicative function, we rewrite (30) as

$$[f(x_j)] = a, \tag{32}$$

because of (5) (with j + t instead of t) and (31).

It is clear that $\mu(x_i) = 0$, because of (31) and $x_j \in F_f(a)$, because of (32).

Now, let j runs the set $\{0, 1, 2, ...\}$. For every j we have $x_j \in F_f(a)$. The theorem is proved, since $x_{j_1} \neq x_{j_2}$, when $j_1 \neq j_2$.

We are ready to get a corollary from Theorem 1.

• 1. Let $\{p_t\}_{t=1}^{\infty}$ be an increasing sequence of consequtive primes and $p_1 \ge 5$. We set

$$\vartheta_t = \frac{p_t + 1}{p_t - 1}, \qquad t \in \mathcal{N}.$$

Obviously the conditions e_1 , e_2) and e_3) are satisfied for the sequence $\{\vartheta_t\}_{t=1}^{\infty}$. If we put $f(m) = \frac{\psi(m)}{\varphi(m)}$, $f(m) = \frac{\sigma(m)}{\varphi(m)}$ or $f(m) = \frac{\sigma^2(m)}{\Phi(m)}$ (see (7), (8), (9) and (10)), then relations (5) hold.

• II. Let $\{p_t\}_{t=1}^{\infty}$ be an increasing sequence of consequtive primes and $p_1 \ge 2$. We set

$$\vartheta_t = 1 + \frac{1}{p_t}, \qquad t \in \mathcal{N}.$$

Obviously the conditions e_1 , e_2) and e_3) are satisfied for the sequence $\{\vartheta_t\}_{t=1}^{\infty}$. If we put $f(m) = \frac{\psi(m)}{m}$ or $f(m) = \frac{\sigma(m)}{m}$ (see (7) and (10)), then the relations (5) hold.

• III. Let $\{p_t\}_{t=1}^{\infty}$ be an increasing sequence of consequtive primes and $p_1 \geq 3$. We set

$$\vartheta_t = 1 + \frac{1}{p_t - 1}, \qquad t \in \mathcal{N}.$$

Obviously the conditions e_1 , e_2) and e_3) are satisfied for the sequence $\{\vartheta_t\}_{t=1}^{\infty}$. If we put $f(m) = \frac{m}{\varphi(m)}$, (see (8)), then the relations (5) hold.

So to everyone of the cases 1., II. and III. Theorem 1. is applicable and as a result we obtain the following

<u>Theorem 2.</u> Let f be one of the following functions:

$$\frac{\psi(m)}{\varphi(m)}, \frac{\sigma(m)}{\varphi(m)}, \frac{\sigma^2(m)}{\Phi(m)}, \frac{\psi(m)}{m}, \frac{m}{\varphi(m)}, \frac{\sigma(m)}{m}$$

(see (7), (8), (9) and (10)). For every $a \in \mathcal{N}$ the set $F_f(a)$ has infinitely many elements x, for which is fulfiled $\mu(x) = 0$, where μ is the Miobius function.