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NOTE ON SOME CLASSICAL ARITHMETIC
FUNCTIONS

MLADEN V. VASSILEV - MISSANA

Let be an infinite sequence of real numbers, which satisfies the conditions;

eci) For every i £ Af we have %t £ (I, where Af denotes the set of

natural numbers, i.e. A ~ {1,2,3,..

*e2) For every i £ Af it is fulfiled
1 _ 1 |
dt+i - 4 I ~
(in particular from  immediatly follows that for every t £ Afy Vt > df+l)-
«e*) The sequence Han} , converges to -foo, where

an — 1h.190 me «t2> n € Af. {1)
From (1) obviously follow
an ~ ih-a-n-u n € Af, n> 2 (2)
and
anM> an, n £ Af. 3)

Definition; Let a £ Af be fixed. For every arithmetic function / we set
Ff(a) —{x £Af : [f(x)] = a} (4)

(here and further we denote by [?] the integer part of y ).
The main result of this paper is :

Theorem 1. Let be an increasing sequence of primes and {?Me=i satisfies
the conditions e})>e2)> and e3). If a iriultiplicative function / satisfies the relations
f(vt) — &> t e Af ()

then for every a £ Af the set Fj(a) has infinitely many elements x, lor which it h
fulfiled
fj\x) = 0, (6)

where u m the classical Miobuis function.

Let ru £ Al with canonical form m ~ ifflgf*... <€ ( gv are different primes,
av > 1 are natural numbers, and v — 1 , 2 be arbitrary. We consider the
following classical arithmetic functions given bellow:

iPm) ==m(l + £)(t+£)...(0 + %) (7)
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<f>(m) = m2(:|.~ N -e- cee - 9
P00 i ®
M+ .
I RN o ST R P
cr(m) - 1. “ed (10)
where cr(m) is the sum of all divisors of m, 4>(ra) equals to the quantity of all
irreductible fractions in the matrix:
14 i 142t 14-mi \
m » m >***h m
2JLi 2 4 2i 24 mi
m-— > m »‘° m
>(* — i)*

m 4-mi ,
m 1

(p(m) is the Euler’s totient function, 'ip(rn) is the function of Dedekind,
In the present paper is shown that in Theorem 1., instead of /, we could put
everyone of the following functions:
ip(rn) cf(rn) c2(m) xj)(M)  rn

(P\rm)%p(m)>$(m) ~ m ><p(m)
In order to prove Theorem 1. we need some assertions.

( see Theorem 2.)

Lemma 1 If satisfies the conditions e\) and c-i) and is given by
(1), then forevery n € N , n> 2, the inequality
ISk ™ o
holds.

Proof: We shall use an induction by n. Prom cj) we obtain
1y (12)

On the other hand the inequality
J < A~lhu
*ITT %) - 1 (13)

holds, bec ause of e-i). Therefore (12) and (13) imply the inequality

But (14) coincided with (11) when n — 1.

Let (11) be fulfiled for some n > 2. It reinaiiis to prove that (11) holds with
n 4- 1 instead of n too.

We multiply the both hands of (11) by tfn and using (2) we obtain:

an < in A"t (15)

Since
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Q1+ 1 1
-'Tlr:i | ~ WIT- !
the property e>) iniplies the inequality
>
- 16
M+~ 1~ (16)
Since iL, < 1, from the obvious inequality
>n2~tn)< 1
it follows
But (16) and (17) yield
18
errlr (18)
Hence
N2 —"n+l
** 4 +i -1 (19)

because of (15).
The inequality (19) is just the same as (11) with n 4- 1 instead of n.
The lemma is proved.

Lemma 2. Let a € A/ and a > 2 be fixed. If there exists n > 2, such that the
inequality
a—Il<an1 <a (20)

holds, then the inequality
fin > fi4- 1 (21)

is impossible.

Proof: Let (20) holds for some n> 2. Then

WttAt i &
hence
(22)
because of (2).
Let us suppose that (21) holds. Then (21) and (22) imply
a+ 1< ®o
hence
(23)
But (20) yields
1"f4n~1" d. (24)

Therefore from (23) and (24) we obtain
1#an-j> iy 7 te
lienee

N9 __
a*-1~ A ~rt
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But the last inequality contradicts to (11), proven in Lemma 1
the lemma is proved.

Corollary If i satisfies (20) for some n > 2 and an > a, then
[a5] = @ (25)
Lemma 3. Let Le an arbitrary sequence, which satisfies ej), Cj) and e3).

Then for every a £ Ar there exists n such, that (25) holds.

Proof; We shall use an induction by a.
Fora= 1lweset n = iand have [aTj= pT] — 1, i.e. the assertion of the lemma

is true, when a = 1.
Let the lemma is true for some a —1, where a —1> 1, i.e. there exists n such,

that the equality
[on_]]=a -1 (26)

holds.
Let n denotes the greatest number for which (26) is fulfiled. Such n always exists,

because, of €3). For this n we obviously have
an> a. 27

But (26) is equivalent with (20). Therefore the corollary of Lemma 2. is appli-
cable, because of (27). Hence

[an] = a.
The lemma is proved.
Proof of Theorem 1 Let a € Af be fixed, j > 0 he integer. Instead of we
consider the sequence
If we set
j —"y+ oo o $j+n> n £ Af, (28)
then the conditions ), e2) and e3) are satisfied for the sequence but with

&+ instead of i)i and anj instead of an.
Therefore the assertion of Lemma 3. remains valid, hence
KJ - a (30)

for a suitable n.
Using (28) we rewrite (29) in the form
[#7+1 -&JH2 e o #?j+n] = a (30)
and set
Zj —Pj+.pj+2 **'Pj+n- (31)
Since / is a multiplicative function, we rewrite (30) as
[/(*)] = « (32)

because of (5) (with j --1 instead oft ) and (31).
It is dear that p{xj) —O0, because of (31) and Xj £ /'V(a) >because of (32).
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Now, let j runs the set {0,1,2,...}. For every j we have Xj € Fy(a), The
theorem is proved, since xn £ xn, when ji /
We are ready to get a corollary from Theorem 1

e 1 Let ; be an increasing sequence of consequtive primes and p. > 5. We
set
~ = B, te M.
Obviously the conditions Ci),e2) and c3) are satisfied for the sequence
If we put f(m) = , f(m) = or f(m) = (see (7) , (8), (9) and

(10) ), then relations (5) hold,

o Il Let be an increasing sequence of consequtive primes and pi > 2, We
set
i?4= i+
Obviously the conditions ei), e2) and e3) axe satisfied for the sequence

If we put f(m) = or f(m) ~ (see (?) and (10) ), then the relations (5)
hold.

* Ill. Let {Pi}t— be an increasing sequence of consequtive primes and px > 3.
We set

f—_!TrEr!r_'f’ te A

Obviously the conditions ei),e2) and e3) are satisfied for the sequence {t"}j£
If we put f(m) = , (see (8) ), then the relations (5) hold.

So to everyone of the cases IM1L and Ill. 'Theorem 1 is applicable and as a

result we obtain the following

Theorem 2. Let / be one of the following functions:
t/dm) aim) t/>(rri) m a(m)
v?2(mr IpirnY 4((m) } m ’<p(m)5 m
(see (7)t (8), (9) and (10)). For every a G M the set f'/(a) has infinitely many
elements x , for which is fulfiled p(x) = 0, where p is the Miobius function.



