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NOTE ON SOME CLASSICAL ARITHMETIC
FUNCTIONS

M LADEN V. VASSILEV - M ISSANA

Let be an infinite sequence of real numbers, which satisfies the conditions;

•c i)  For every i £  A f  we have i9t £  (I, where Af  denotes the set of
natural numbers, i.e. .Af  ~  {1 ,2 , 3 ,..

• e 2) For every i £  A f  it is fulfiled
1 _ 1 I

dt+i -  -1 I ~
(in particular from £■>) immediatly follows that for every t £  A f y Vt > df+1)- 

•e*) The sequence -jan } ,  converges to -foo, where
an — lh.1%2 ■ • • t?n> n  € Af. {1)

From (1) obviously follow
a,n ~ ih-a-n-u n €  Af, n >  2 (2)

and
an_M > an, n £ Af. (3)

Definition; Let a £ A f  be fixed. For every arithmetic function /  we set
Ff(a) — {x  £ A f  : [f(x)] =  a} (4)

(here and further we denote by [?/] the integer part of y ).
The main result of this paper is :

Theorem 1. Let be an increasing sequence of primes and {?Me=i satisfies
the conditions e} )>e2)> and e3). If a iriultiplicative function /  satisfies the relations

f ( v t )  — $t> t e  Af  (r>)

then for every a £ A f  the set Fj(a) has infinitely many elements x, lor which it lh 
fulfiled

fj \x) =  0, (6)

where u m the classical Miobuis function.
Let ru £ Al with canonical form m  ~ iff1 .q.f* . . .  </£* ( qv are different primes, 

a v >  1 are natural numbers, and v — 1 , 2 be arbitrary. We consider the 
following classical arithmetic functions given bellow:

iP(m) := m (l +  £ ) (  t +  ± ) . .. (J +  ± ) (7 )
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<f>(m) : = m2( 1 ~  4r)(i -'ll • -V> • • • 0 -  L ) (9)
c12 «7jk

cr(rn)
*1 +1

11 -  i «J*+1 -  1 c +1- > (10)
<h ~ 1 —1 • Qfe — 1

where cr(m) is the sum of all divisors of m, 4>(ra) equals to the quantity of all 
irreductible fractions in the matrix:

1 4  i 1 -f- 2t 1 4- mi \  
5 mm » m  > * * *

2Jl_i 2 4- 2i 2 4 mi
m > m, »‘ ‘ ‘ ’ m

>(* = i)*

m  4- m i  , 
m  '

(p(m) is the Euler’s totient function, 'ip(rn) is the function of Dedekind,
In the present paper is shown that in Theorem 1., instead of / ,  we could put 

everyone of the following functions:
ip(rn) cf(rn) cr2(m) xj)(m)
(p\rn)% (p(m)> $ ( m )

rn ( see Theorem 2. )m > <p(m)
In order to prove Theorem 1. we need some assertions.

Lemma 1. If satisfies the conditions e\) and c-i) and is given by
(1), then for every n €  N  , n >  2 , the inequality

7 < 2 ~  ^a" -‘ < K 1

holds.

Proof: We shall use an induction by n. Prom cj) we obtain
1

1

On the other hand the inequality
J__ < A~lhu

' $•) -  1* 1 - 1

holds, bec ause of e-i). Therefore (12) and (13) imply the inequality
< 2 ~  ih

(it)

( 12)
(13)

(14)

But (14) coincided with (11) when n — 1.
Let (11) be fulfiled for some n  >  2. It reinaiiis to prove that (11) holds with 

n  4- 1 instead of n  too.
We multiply the both hands of (11) by tfn and using (2) we obtain:

(15)an < i9n ..A r

Since
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A ~ ,• ' T 1.-+- } !L±i 1
i ~  WrT-

the property e>) ini plies the inequality
> _

^n + l ~  1 ~

1,

( 16)

Since iL, < 1 , from the obvious inequality
1>n(2 ~  t?n) < 1

it follows
2 - t 4 ,  .  1 (17)

But (16) and (17) yield

e r r 1 r
(18)

Hence
 ̂ 2 — ^n+l

** 4 +i -  1’ (19)

because of (15).
The inequality (19) is just the same as (11) with n 4- 1 instead of n. 
The lemma is proved.

Lemma 2. Let a €  A/ and a >  2 be fixed. If there exists n  >  2, such that the
inequality

a — I <  an - 1  < a (20)

holds, then the inequality
fin >  fi 4- 1 (21)

is impossible.

Proof: Let (20) holds for some n >  2. Then
■?itt. <2rt_ i 7/n. &

hence
(22)

because of (2).
Let us suppose that (21) holds. Then (21) and (22) imply

a + 1 < t9n.o
hence

But (20) yields
1 "f <Ln~ 1 ^  d.

Therefore from (23) and (24) we obtain
1 4* an-  j > :

lienee
; v z  t • 

 ̂ 2 —
a* - 1 ^ ^ ~ r t ‘

(23)

(24)
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But the last inequality contradicts to (11), proven in Lemma 1. 
t he lemma is proved.

Corollary If i satisfies (20) for some n  >  2 and an >  a, then
[a»] =  «■ (25)

Lemma 3. Let Le an arbitrary sequence, which satisfies e j ), Cj) and e3).
Then for every a £  Ar there exists n  such, that (25) holds.

Proof; We shall use an induction by a.
For a =  1 we set n =  i and have [aT j =  pT] — 1, i.e. the assertion of the lemma 

is true, when a = 1.
Let the lemma is true for some a — 1, where a — 1 >  1, i.e. there exists n  such, 

that the equality
[on_ 1] =  a - l  (26)

holds.
Let n  denotes the greatest number for which (26) is fulfiled. Such n  always exists, 

because, of e3). For this n  we obviously have
an > a. (27)

But (26) is equivalent with (20). Therefore the corollary of Lemma 2. is appli­
cable, because of (27). Hence

[an] =  a.
The lemma is proved.

Proof of Theorem 1. Let a €  A f  be fixed, j  >  0 he integer. Instead of we
consider the sequence 

If we set
j — ' ĵ + l • • • $j+n> n  £  A f , (28)

then the conditions Cj ), e2) and e3) are satisfied for the sequence but with
&j+t instead of i)i and anj instead of an.

Therefore the assertion of Lemma 3. remains valid, hence
K J  -  a (30)

for a suitable n.
Using (28) we rewrite (29) in the form

[#7+1 -&J+ 2 • • ■ *?j+n] =  a (30)

and set
Zj — Pj + i.pj+2 * * 'Pj+n- (31)

Since /  is a multiplicative function, we rewrite (30) as
[/(*,)] =  «. (32)

because of (5) (with j -f-1 instead o f t  ) and (31).
It is dear that p{xj )  — 0, because of (31) and Xj £  /'V(a) > because of (32).



32
Now, let j  runs the set {0 ,1 ,2 , . . . } .  For every j  we have Xj €  Fy(a), The 

theorem is proved, since x n £  xn , when j i  /  .
We are ready to get a corollary from Theorem 1.

•  1. Let ; be an increasing sequence of consequtive primes and p 1  >  5. We
set

^  =  £*-±4, t e  M.1 pt — i
Obviously the conditions Ci),e2) and c3) are satisfied for the sequence 

If we put f ( m )  = , f ( m )  =  or f ( m )  = (see (7) , (8), (9) and

(10) ), then relations (5) hold,

•  II. Let be an increasing sequence of consequtive primes and pi > 2, We
set

i?4 =  i +
Obviously the conditions ei), e2) and e3) axe satisfied for the sequence

lf we put f ( m )  =  or f ( m ) ~  (see (?) and (10) ), then the relations (5)
hold.

•  III. Let {Pi}t— i be an increasing sequence of consequtive primes and px > 3.
We set

— I T  — ■— t , t G A/".f - , ‘r pr=r7
Obviously the conditions e i ) , e2) and e3) are satisfied for the sequence {t^}j£

If we put f ( m )  =  , (see (8) ), then the relations (5) hold.

So to everyone of the cases 1M 11. and III. 'Theorem 1. is applicable and as a 
result we obtain the following

Theorem 2. Let /  be one of the following functions:
t /d m )  a i m )  t/>(rri) m a (m )
v ?(m r IpirnY  4((m) } m  ’ <p(m)5 m

(see (7)t (8), (9) and (10)). For every a G JV* the set f'/(a) has infinitely many 
elements x , for which is fulfiled p(x)  = 0, where p  is the Miobius function.


