NNTDM 2 (1996) 1, 24-27

ON TWO ARITHMETIC SETS

Krassimir Atanassov^{1,2} and Mladen Vassilev²

1 - CLBME - Bulgarian Academy of Sciences, Acad. G. Bonchev,

Bl. 105, Sofia-1113, BULGARIA

2 - Math. Res. Lab., P.O.Box 12, Sofia-1113, BULGARIA

Let the natural number n have the canonical representation $n = \frac{k}{n} = \frac{\alpha}{1}$, where p_1, \ldots, p_k are different prime numbers and $\alpha_1, \ldots, 1 = 1$ $\alpha_k \ge 1$ are natural numbers.

As it is well known, the functions $\Psi,\ \Psi$ and σ defined for a natural number n by:

are multiplicative.

Let for the fixed natural number a the two arithmetic sets

$$A_{a} = \{x / [\frac{\psi(x)}{\psi(x)}] = a\} \text{ and } B_{a} = \{x / [\frac{\sigma(x)}{\psi(x)}] = a\}$$

are defined.

In the paper the following two questions are discussed: 1. Are A $\neq \phi$ and B $\neq \phi$ for every natural number a?

2. Is $card(A) = card(B) = \infty$ for every natural number a, where

card(X) is the cardinality of the set X?

Let $\{p_1\}_{i=1}^{\infty}$ be an infinite sequence of prime numbers, satisfying the inequalities: $5 \le p_1 \le p_2 \le p_3 \le \dots$

Let the sequence $\{a_i\}_{i=1}^{\infty}$ be defibed by:

$$a_{n} = \frac{p_{1} + 1}{p_{1} - 1} \cdot \frac{p_{2} + 1}{p_{2} - 1} \cdot \cdots \cdot \frac{p_{n} + 1}{p_{n} - 1}$$
(1)

for the natural number $n \ge i$. Obviously, for a it is valid the equality:

$$a_{n} = \frac{n}{1-i} \left(1 + \frac{2}{p_{1}-i}\right),$$

from where it follows that $\{a_i\}_{i=1}^{\infty}$ is monotone increasing sequence, all multipliers of which are greater than 1. Therefore, this sequence converges to ∞ , if $\{p_i\}_{i=1}^{\infty}$ are consequtive prime numbers.

The following recurrent equality holds for n \geq 2:

$$a_{n} = \frac{p_{n} + 1}{p_{n} - 1} \cdot a_{n-1}$$
(2)

LEMMA 1: For $n \ge 2$ the inequality

$$a_{n-1} < \frac{p_n - 3}{2}$$
 (3)

is valid.

Proof: We shall use the induction. For n = 2 (3) has the form:

$$a_1 = \frac{p_1 + 1}{p_1 - 1} < \frac{p_2 - 3}{2},$$

From $p_2 \ge p_1 + 2$ and from obvious inequality for $p_1 \ge 5$: $p_1^2 - 4$, $p_1 - 1 \ge 0$ it follows that

$$\frac{p_1 + 1}{p_1 - 1} < \frac{(2 + p_1) - 3}{2} \leq \frac{p_2 - 3}{2},$$

1.e., $a_1 < \frac{p_2 - 3}{2}$.

Let (3) be valid for some $n \ge 2$. We shall prove (3) for n + 1. Let us multiply both sides of (3) with $\frac{p_n + 1}{p_n - 1}$ and then use (2). We get:

$$a_n < \frac{p_n - 3}{2} \cdot \frac{p_n + 1}{p_n - 1}$$
 (4)

From the obvious inequalities $(p_n - 3), (p_n - 1) < (p_n - 1)^2$ and $p_{n+1} \ge 2 + p_n$ it follows that

$$\frac{p_n - 3}{2} \cdot \frac{p_n + 1}{p_n - 1} < \frac{(2 + p_n) - 3}{2} < \frac{p_{n+1} - 3}{2} \cdot \frac{p_{n+2} - 3}{2}$$

From heve and (4) it follows that $a_n < \frac{p_{n+1}}{2}$ with which Lemma 1 is proved.

LEMMA 2. Let a \geq 2 is an arbitrary natural number and let for some natural number n \geq 2 be valid the inequality:

$$-1 \leq a \leq a.$$
(5)

Then the inequality $a \ge a + i$ is not possible. Proof: From (5) it follows that - 26 -

$$\frac{p_{n}+1}{p_{n}-1} \cdot a_{n-1} < a \cdot \frac{p_{n}+1}{p_{n}-1}.$$
(6)

From (2) and from the last inequality we obtain that

$$a_{n} < \frac{p_{n} + i}{p_{n} - i}, a.$$

$$(7)$$

Let us assume that (6) is valid. From (6) and (7) follows the inequality $a + i < \frac{p + i}{n}$, a. Hence

equality
$$a + 1 < \frac{n}{p_n - 1}$$
, a. Hence
 $p_n + 1$

 $a > \frac{r_n}{2}$ (8)

On the other hand, from (5) we obtain

THEOREM 1: Let a ≥

$$1 + a \ge a. \tag{9}$$

From (8) and (9) it follows the inequality $1 + a_{n-1} > \frac{p_n - 1}{2}$, which can be represented in the form $a_{n-1} > \frac{p_n - 3}{2}$, but it is in a

contradiction with (3) from Lemma 1. Therefore, our assumption is not valid and hence the Lemma 2 is proved.

COROLLARY 1: If a satisfies (5), then a satisfies the same inequality or it is valid that $a \leq a \leq a + 1$.

COROLLARY 2: If a satisfies (5), and a satisfies the inequality a $\leq a_n$, then it is valid the equality [a] = a. (10)

i be an arbitrary natural number, and
$$\{p_i\}_{i=1}^{\infty}$$

is an arbitrary sequence of consequtive prime numbers for which $5 \le p_1 < p_2 < \ldots$ Then there exists a natural number n, for which $\{a_n\} = a$.

Proof: We shall use an induction for a. When a = 1, we put n = 1 and we have $a_1 = \frac{p_1 + 1}{p_1 - 1}$. Obviously, $[a_1] = 1$.

Let us assume that the theorem is valid for some natural number a - 1 and let the natural number n is the greatest one with the property

$$[a_{n-1}] = a - 1.$$
 (11)

Such n exists, because the sequence $\{a_i\}_{i=1}^{\infty}$ is monotone increasing and its limit is ∞ . Therefore,

$$a \ge n.$$
 (12)

Obviously, (11) is equivalent to (5) and therefore from (12) and Corollary 2 it follows that (10) holds, with which the Theorem is proved.

Therefore, we get a positive answer to the first of the two questions formulated in the beginning of the paper.

THEOREM 2: For every natural number $a \ge i$ there are infinitely many natural numbers m, for which $\mu(m) = 0$, where μ is the Moebius's function, such that

$$\left[\frac{\Psi(n)}{\Psi(n)}\right] = a \text{ and } \left[\frac{\sigma(n)}{\Psi(n)}\right] = a.$$

Proof: Let $\{p_i\}_{i=1}^{\infty}$ be an arbitrary sequence of consequtive prime numbers for which $5 \le p_1 \le p_2 \le \ldots$ According to Theorem 1 there exists at least one n for which (10) is valid, where a is defined by (1). Let us put $m = p_1, p_2, \ldots, p_n$.

Obviously, $\mu(m) = 0$. It can be seen directly, that

$$\frac{\Psi(m)}{\Psi(m)} = \frac{\sigma(m)}{\Psi(m)} = \frac{p_1 + 1}{p_1 - 1} \cdot \frac{p_2 + 1}{p_2 - 1} \cdot \cdots \cdot \frac{p_n + 1}{p_n - 1} = a_n$$

from where it follows that $\left[\frac{\psi(m)}{\psi(m)}\right] = a$ and $\left[\frac{\sigma(m)}{\psi(m)}\right] = a$.

Because there are infinitely many sequences $\{p_i\}_{i=1}^{\infty}$ with consequences prime numbers for which $5 \leq p_i < p_2 < \ldots$, it follows that there are infinitely many natural numbers m with the above property.

We can note also, that there exists a way for obtaining infinitely many trivial solutions to the two last equalities.

Let a be an arbitrary fixed natural number and let $m = p_1 \cdot p_2$, p_n be a natural number such that $[\frac{\psi(m)}{\psi(m)}] = a$.

Let for $\alpha = \langle \alpha_1, \alpha_2, \dots, \alpha_n \rangle$ we put $m_{\alpha} = m(\alpha_1, \alpha_2, \dots, \alpha_n) = \prod_{i=1}^{n} p_i^{-1}$. Obviously, $m(1, 1, \dots, 1) = m$. Therefore

$$\begin{bmatrix} \varphi(\mathbf{m}) \\ \varphi(\mathbf{m}) \end{bmatrix} = \begin{bmatrix} \varphi(\mathbf{m}) \\ \varphi(\mathbf{m}) \end{bmatrix} = \begin{bmatrix} \sigma(\mathbf{m}) \\ \varphi(\mathbf{m}) \end{bmatrix} = \begin{bmatrix} \sigma(\mathbf{m}) \\ \varphi(\mathbf{m}) \end{bmatrix} = \mathbf{a}.$$

Therefore, we have a positive answer to the second of the two questions formulated in the beginning of the paper, too.